Base field 3.1.23.1
Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 + 1)
gp (2.8): K = nfinit(a^3 - a^2 + 1);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a^2 + a, -a^2 - a + 1, a + 1, -86*a^2 + 129*a - 104, -517*a^2 + 886*a - 666]),K);
sage: E = EllipticCurve(K, [a^2 + a, -a^2 - a + 1, a + 1, -86*a^2 + 129*a - 104, -517*a^2 + 886*a - 666])
gp (2.8): E = ellinit([a^2 + a, -a^2 - a + 1, a + 1, -86*a^2 + 129*a - 104, -517*a^2 + 886*a - 666],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((167,2 a^{2} + 3 a - 5)\) | = | \( \left(-2 a^{2} - 3 a + 5\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 167 \) | = | \( 167 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((3622557586593623,a + 678200946290827,a^{2} - a + 2900306726936139)\) | = | \( \left(-2 a^{2} - 3 a + 5\right)^{7} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 3622557586593623 \) | = | \( 167^{7} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( -\frac{10662760246308487894808}{3622557586593623} a^{2} + \frac{18721837331562719138346}{3622557586593623} a - \frac{14121786168686506510523}{3622557586593623} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank: \( 0 \)magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: 1
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | Trivial |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(-2 a^{2} - 3 a + 5\right) \) | \(167\) | \(1\) | \(I_{7}\) | Non-split multiplicative | \(1\) | \(1\) | \(7\) | \(7\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(7\) | 7B.1.3 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
7.
Its isogeny class
167.1-A
consists of curves linked by isogenies of
degree 7.