Properties

Label 3.1.23.1-161.2-A5
Base field 3.1.23.1
Conductor norm \( 161 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -1, 1]))
 
gp: K = nfinit(Polrev([1, 0, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a+1\right){x}{y}+a{y}={x}^{3}+\left(a^{2}+a\right){x}^{2}+\left(-122205a^{2}+214461a-161897\right){x}-29503518a^{2}+51775066a-39083845\)
sage: E = EllipticCurve([K([1,1,1]),K([0,1,1]),K([0,1,0]),K([-161897,214461,-122205]),K([-39083845,51775066,-29503518])])
 
gp: E = ellinit([Polrev([1,1,1]),Polrev([0,1,1]),Polrev([0,1,0]),Polrev([-161897,214461,-122205]),Polrev([-39083845,51775066,-29503518])], K);
 
magma: E := EllipticCurve([K![1,1,1],K![0,1,1],K![0,1,0],K![-161897,214461,-122205],K![-39083845,51775066,-29503518]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-6a+1)\) = \((2a^2-a)\cdot(3a^2-2a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 161 \) = \(7\cdot23\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((41a^2-a-15)\) = \((2a^2-a)^{2}\cdot(3a^2-2a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25921 \) = \(7^{2}\cdot23^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{258562058370012941913191}{1127} a^{2} - \frac{453744781572309571525470}{1127} a + \frac{342521801784920454613398}{1127} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{225}{2} a^{2} + \frac{787}{4} a - \frac{299}{2} : \frac{187}{4} a^{2} - \frac{643}{8} a + \frac{485}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.0665059121041522227956258127993111159 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 0.44476371070160675906243039255545946620 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^2-a)\) \(7\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((3a^2-2a)\) \(23\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 161.2-A consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.