Properties

Base field 3.1.23.1
Label 3.1.23.1-136.1-A3
Conductor \((34,2 a^{2} + 4)\)
Conductor norm \( 136 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 + 1)
 
gp (2.8): K = nfinit(a^3 - a^2 + 1);
 

Weierstrass equation

\( y^2 + a x y + y = x^{3} + \left(a - 1\right) x^{2} + \left(-20 a^{2} - a - 30\right) x - 38 a^{2} + 36 a - 40 \)
magma: E := ChangeRing(EllipticCurve([a, a - 1, 1, -20*a^2 - a - 30, -38*a^2 + 36*a - 40]),K);
 
sage: E = EllipticCurve(K, [a, a - 1, 1, -20*a^2 - a - 30, -38*a^2 + 36*a - 40])
 
gp (2.8): E = ellinit([a, a - 1, 1, -20*a^2 - a - 30, -38*a^2 + 36*a - 40],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((34,2 a^{2} + 4)\) = \( \left(2\right) \cdot \left(-a^{2} - 2\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 136 \) = \( 8 \cdot 17 \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((60716992766464,512 a + 35495348770304,512 a^{2} - 512 a + 18446375560192)\) = \( \left(2\right)^{9} \cdot \left(-a^{2} - 2\right)^{9} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 15916595351771938816 \) = \( 8^{9} \cdot 17^{9} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -\frac{287944742921902931}{60716992766464} a^{2} + \frac{247958719176608235}{30358496383232} a - \frac{265887199961636953}{60716992766464} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 1

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{2} - 2\right) \) \(17\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)
\( \left(2\right) \) \(8\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 136.1-A consists of curves linked by isogenies of degrees dividing 9.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.