Properties

Label 3.1.23.1-136.1-A2
Base field 3.1.23.1
Conductor norm \( 136 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -1, 1]))
 
gp: K = nfinit(Polrev([1, 0, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 

Weierstrass equation

\({y}^2+a^{2}{x}{y}+\left(a^{2}+1\right){y}={x}^{3}-{x}^{2}+\left(-a^{2}+26a+21\right){x}-88a^{2}+13a+59\)
sage: E = EllipticCurve([K([0,0,1]),K([-1,0,0]),K([1,0,1]),K([21,26,-1]),K([59,13,-88])])
 
gp: E = ellinit([Polrev([0,0,1]),Polrev([-1,0,0]),Polrev([1,0,1]),Polrev([21,26,-1]),Polrev([59,13,-88])], K);
 
magma: E := EllipticCurve([K![0,0,1],K![-1,0,0],K![1,0,1],K![21,26,-1],K![59,13,-88]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^2-4)\) = \((2)\cdot(-a^2-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 136 \) = \(8\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-40a^2-80a-96)\) = \((2)^{3}\cdot(-a^2-2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -2515456 \) = \(-8^{3}\cdot17^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{214693602205}{19652} a^{2} + \frac{1064389027655}{39304} a + \frac{69858641986}{4913} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(3 a^{2} - 1 : -a^{2} + a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 8.7977659092744721630536872237197356128 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 0.40765800079637202880182367092307604747 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(8\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((-a^2-2)\) \(17\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 136.1-A consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.