Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
75.1-a1 75.1-a \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.547989231$ 2.113713401 \( -\frac{147281603041}{215233605} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -9574 a - 41356\) , \( 2099208 a + 9072429\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-9574a-41356\right){x}+2099208a+9072429$
75.1-a2 75.1-a \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.19195692$ 2.113713401 \( -\frac{1}{15} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -4 a + 4\) , \( -472 a - 2021\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4a+4\right){x}-472a-2021$
75.1-a3 75.1-a \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.547989231$ 2.113713401 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 3041 a + 13164\) , \( 107608 a + 465082\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(3041a+13164\right){x}+107608a+465082$
75.1-a4 75.1-a \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.19195692$ 2.113713401 \( \frac{111284641}{50625} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -874 a - 3756\) , \( 14008 a + 60559\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-874a-3756\right){x}+14008a+60559$
75.1-a5 75.1-a \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.19195692$ 2.113713401 \( \frac{13997521}{225} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 439 a - 2316\) , \( 11311 a - 60156\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(439a-2316\right){x}+11311a-60156$
75.1-a6 75.1-a \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.19195692$ 2.113713401 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -11749 a - 50756\) , \( 1518008 a + 6560584\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-11749a-50756\right){x}+1518008a+6560584$
75.1-a7 75.1-a \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.547989231$ 2.113713401 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -6964 a - 30076\) , \( -696072 a - 3008283\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6964a-30076\right){x}-696072a-3008283$
75.1-a8 75.1-a \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.19195692$ 2.113713401 \( \frac{1114544804970241}{405} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -187924 a - 812156\) , \( 97324808 a + 420620839\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-187924a-812156\right){x}+97324808a+420620839$
75.1-b1 75.1-b \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $39.45005330$ $0.490422220$ 2.006209393 \( -\frac{147281603041}{215233605} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -110\) , \( -880\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-110{x}-880$
75.1-b2 75.1-b \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.465628331$ $31.38702211$ 2.006209393 \( -\frac{1}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}$
75.1-b3 75.1-b \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/8\Z$ $\mathrm{SU}(2)$ $19.72502665$ $1.961688882$ 2.006209393 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 35\) , \( -28\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+35{x}-28$
75.1-b4 75.1-b \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $9.862513326$ $7.846755528$ 2.006209393 \( \frac{111284641}{50625} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -10\) , \( -10\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-10{x}-10$
75.1-b5 75.1-b \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $4.931256663$ $31.38702211$ 2.006209393 \( \frac{13997521}{225} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -5\) , \( 2\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5{x}+2$
75.1-b6 75.1-b \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $19.72502665$ $1.961688882$ 2.006209393 \( \frac{272223782641}{164025} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -135\) , \( -660\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-135{x}-660$
75.1-b7 75.1-b \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.465628331$ $31.38702211$ 2.006209393 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -80\) , \( 242\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242$
75.1-b8 75.1-b \(\Q(\sqrt{93}) \) \( 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $39.45005330$ $0.490422220$ 2.006209393 \( \frac{1114544804970241}{405} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -2160\) , \( -39540\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-2160{x}-39540$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.