Properties

Label 2.2.92.1-98.1-k2
Base field \(\Q(\sqrt{23}) \)
Conductor norm \( 98 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{23}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 23 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-23, 0, 1]))
 
gp: K = nfinit(Polrev([-23, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-23, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(6a-25\right){x}-30a+144\)
sage: E = EllipticCurve([K([1,0]),K([-1,1]),K([1,0]),K([-25,6]),K([144,-30])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,1]),Polrev([1,0]),Polrev([-25,6]),Polrev([144,-30])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,1],K![1,0],K![-25,6],K![144,-30]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-7a+35)\) = \((-a+5)\cdot(-a+4)\cdot(-a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 98 \) = \(2\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((833a+5243)\) = \((-a+5)\cdot(-a+4)^{6}\cdot(-a-4)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11529602 \) = \(2\cdot7^{6}\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{872247049}{235298} a + \frac{6505210013}{235298} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-2 : 2 a - 9 : 1\right)$ $\left(\frac{25}{49} a - \frac{215}{49} : -\frac{398}{343} a + \frac{2041}{343} : 1\right)$
Heights \(0.36364277596945472397058949869074457704\) \(2.4213939807232701805924241995290328773\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a + \frac{11}{4} : \frac{1}{2} a - \frac{15}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.85412609023869830465111965696609964912 \)
Period: \( 11.324602984851913892083976109142613148 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 4.0337692531265922617022406161383464161 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+5)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a+4)\) \(7\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a-4)\) \(7\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 98.1-k consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.