Properties

Label 2.2.92.1-98.1-j3
Base field \(\Q(\sqrt{23}) \)
Conductor norm \( 98 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{23}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 23 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-23, 0, 1]))
 
gp: K = nfinit(Polrev([-23, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-23, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-31a-155\right){x}+282a+1354\)
sage: E = EllipticCurve([K([1,0]),K([-1,-1]),K([1,0]),K([-155,-31]),K([1354,282])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,-1]),Polrev([1,0]),Polrev([-155,-31]),Polrev([1354,282])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,-1],K![1,0],K![-155,-31],K![1354,282]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-7a+35)\) = \((-a+5)\cdot(-a+4)\cdot(-a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 98 \) = \(2\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((168a+896)\) = \((-a+5)^{6}\cdot(-a+4)^{3}\cdot(-a-4)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 153664 \) = \(2^{6}\cdot7^{3}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1159033905357}{2744} a + \frac{695114558471}{343} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(1 : -5 a - 26 : 1\right)$ $\left(\frac{60}{49} a + \frac{317}{49} : -\frac{225}{343} a - \frac{1348}{343} : 1\right)$
Heights \(0.78656032680182357498118236140853952801\) \(1.1114993280142973237947275345067051622\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a - 9 : a + 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.85412609023869830465111965696609964912 \)
Period: \( 22.649205969703827784167952218285226296 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 4.0337692531265922617022406161383464161 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+5)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a+4)\) \(7\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((-a-4)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 98.1-j consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.