Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
100.1-a1 100.1-a \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.224996764$ 1.855775586 \( \frac{92296192}{5} a - \frac{2213166336}{25} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 118 a - 561\) , \( 1769 a - 8486\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(118a-561\right){x}+1769a-8486$
100.1-b1 100.1-b \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.224996764$ 1.855775586 \( -\frac{92296192}{5} a - \frac{2213166336}{25} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -118 a - 561\) , \( -1769 a - 8486\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-118a-561\right){x}-1769a-8486$
100.1-c1 100.1-c \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.384792628$ $17.02000671$ 5.462387985 \( -\frac{92296192}{5} a - \frac{2213166336}{25} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -118 a - 561\) , \( 1769 a + 8486\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-118a-561\right){x}+1769a+8486$
100.1-d1 100.1-d \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.787624877$ $6.044583093$ 4.506182947 \( \frac{6912}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 240 a + 1151\) , \( 55224 a + 264845\bigr] \) ${y}^2={x}^{3}+\left(240a+1151\right){x}+55224a+264845$
100.1-e1 100.1-e \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.384792628$ $17.02000671$ 5.462387985 \( \frac{92296192}{5} a - \frac{2213166336}{25} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 118 a - 561\) , \( -1769 a + 8486\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(118a-561\right){x}-1769a+8486$
100.1-f1 100.1-f \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.617600825 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( 2178 a - 10441\) , \( -178033 a + 853818\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(2178a-10441\right){x}-178033a+853818$
100.1-f2 100.1-f \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 1.617600825 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -222 a + 1069\) , \( 3327 a - 15954\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-222a+1069\right){x}+3327a-15954$
100.1-f3 100.1-f \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.617600825 \( \frac{16384}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-{x}$
100.1-f4 100.1-f \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.617600825 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^{3}-{x}^{2}-41{x}+116$
100.1-g1 100.1-g \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.493902753$ $6.143509620$ 3.796167114 \( -\frac{38112512}{25} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4240 a - 20334\) , \( 330712 a - 1586039\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(4240a-20334\right){x}+330712a-1586039$
100.1-h1 100.1-h \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.787624877$ $6.044583093$ 4.506182947 \( \frac{6912}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 240 a + 1151\) , \( -55224 a - 264845\bigr] \) ${y}^2={x}^{3}+\left(240a+1151\right){x}-55224a-264845$
100.1-i1 100.1-i \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.493902753$ $6.143509620$ 3.796167114 \( -\frac{38112512}{25} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -4240 a - 20334\) , \( -330712 a - 1586039\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-4240a-20334\right){x}-330712a-1586039$
100.1-j1 100.1-j \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.800486153$ $8.729749266$ 4.371323333 \( -\frac{33554432}{5} \) \( \bigl[0\) , \( -a\) , \( a + 1\) , \( -3\) , \( 5 a - 6\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}-3{x}+5a-6$
100.1-k1 100.1-k \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.800486153$ $8.729749266$ 4.371323333 \( -\frac{33554432}{5} \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( -3\) , \( -6 a - 6\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}-3{x}-6a-6$
100.1-l1 100.1-l \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.772687765$ 2.495008916 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 2182 a - 10441\) , \( 186753 a - 895614\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(2182a-10441\right){x}+186753a-895614$
100.1-l2 100.1-l \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $15.95418988$ 2.495008916 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -218 a + 1069\) , \( -4207 a + 20198\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-218a+1069\right){x}-4207a+20198$
100.1-l3 100.1-l \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $31.90837977$ 2.495008916 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
100.1-l4 100.1-l \(\Q(\sqrt{23}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.545375530$ 2.495008916 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.