Properties

Base field \(\Q(\sqrt{89}) \)
Label 2.2.89.1-4.2-a1
Conductor \((5 a + 21)\)
Conductor norm \( 4 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{89}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 22 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 22)
 
gp (2.8): K = nfinit(a^2 - a - 22);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y + \left(a + 1\right) y = x^{3} + \left(-a - 1\right) x^{2} + \left(-14 a - 53\right) x + 34 a + 148 \)
magma: E := ChangeRing(EllipticCurve([a + 1, -a - 1, a + 1, -14*a - 53, 34*a + 148]),K);
 
sage: E = EllipticCurve(K, [a + 1, -a - 1, a + 1, -14*a - 53, 34*a + 148])
 
gp (2.8): E = ellinit([a + 1, -a - 1, a + 1, -14*a - 53, 34*a + 148],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((5 a + 21)\) = \( \left(-a + 5\right)^{2} \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 4 \) = \( 2^{2} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((-5 a + 31)\) = \( \left(-a + 5\right)^{8} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 256 \) = \( 2^{8} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( -2051 a - 19799 \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a + 5\right) \) \(2\) \(3\) \(IV^*\) Additive \(-1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 4.2-a consists of this curve only.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.