Properties

Base field \(\Q(\sqrt{89}) \)
Label 2.2.89.1-16.2-a2
Conductor \((10 a + 42)\)
Conductor norm \( 16 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{89}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 22 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 22)
 
gp (2.8): K = nfinit(a^2 - a - 22);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y = x^{3} - a x^{2} + \left(270 a - 1402\right) x - 11156 a + 58204 \)
magma: E := ChangeRing(EllipticCurve([a + 1, -a, 0, 270*a - 1402, -11156*a + 58204]),K);
 
sage: E = EllipticCurve(K, [a + 1, -a, 0, 270*a - 1402, -11156*a + 58204])
 
gp (2.8): E = ellinit([a + 1, -a, 0, 270*a - 1402, -11156*a + 58204],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((10 a + 42)\) = \( \left(a + 4\right) \cdot \left(-a + 5\right)^{3} \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 16 \) = \( 2^{4} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((448 a - 2368)\) = \( \left(a + 4\right)^{6} \cdot \left(-a + 5\right)^{11} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 131072 \) = \( 2^{17} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{14739}{64} a + \frac{34391}{64} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(7 a - 38 : 12 a - 58 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a + 4\right) \) \(2\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\( \left(-a + 5\right) \) \(2\) \(1\) \(II^*\) Additive \(-1\) \(3\) \(11\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 16.2-a consists of curves linked by isogenies of degree 2.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.