Properties

Label 2.2.89.1-10.4-b2
Base field \(\Q(\sqrt{89}) \)
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{89}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 22 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-22, -1, 1]))
 
gp: K = nfinit(Polrev([-22, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(289a-1500\right){x}-5248a+27374\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([1,0]),K([-1500,289]),K([27374,-5248])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([1,0]),Polrev([-1500,289]),Polrev([27374,-5248])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![1,0],K![-1500,289],K![27374,-5248]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-3a+16)\) = \((a+4)\cdot(4a+17)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5879a+30818)\) = \((a+4)^{16}\cdot(4a+17)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 8192000 \) = \(2^{16}\cdot5^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{33372655241}{8192000} a + \frac{188874263019}{8192000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a + 12 : -6 a + 30 : 1\right)$
Height \(0.20256061409423056345523586278770584502\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{13}{4} a + \frac{37}{2} : \frac{13}{8} a - \frac{39}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.20256061409423056345523586278770584502 \)
Period: \( 16.766373360148804988638334227228522153 \)
Tamagawa product: \( 6 \)  =  \(2\cdot3\)
Torsion order: \(2\)
Leading coefficient: \( 1.0799916291197367208890640082028865891 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+4)\) \(2\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)
\((4a+17)\) \(5\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 10.4-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.