Properties

Label 2.2.89.1-10.3-a1
Base field \(\Q(\sqrt{89}) \)
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{89}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 22 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-22, -1, 1]))
 
gp: K = nfinit(Polrev([-22, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-19676a-82976\right){x}+7368038a+31070944\)
sage: E = EllipticCurve([K([1,1]),K([1,0]),K([0,1]),K([-82976,-19676]),K([31070944,7368038])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,0]),Polrev([0,1]),Polrev([-82976,-19676]),Polrev([31070944,7368038])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,0],K![0,1],K![-82976,-19676],K![31070944,7368038]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a+4)\) = \((a+4)\cdot(4a-21)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-187a-742)\) = \((a+4)^{7}\cdot(4a-21)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 80000 \) = \(2^{7}\cdot5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{12145582503}{80000} a - \frac{63396347301}{80000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(176 a + 741 : 6451 a + 27204 : 1\right)$
Height \(0.041880808063314300004685295873206469791\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.041880808063314300004685295873206469791 \)
Period: \( 26.396782122398683038547114409250749117 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 0.93747786863873276077855675863923678247 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+4)\) \(2\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)
\((4a-21)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 10.3-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.