Base field \(\Q(\sqrt{89}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 22 \); class number \(1\).
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 22)
gp (2.8): K = nfinit(a^2 - a - 22);
Weierstrass equation
magma: E := ChangeRing(EllipticCurve([a + 1, 1, a, -19676*a - 82976, 7368038*a + 31070944]),K);
sage: E = EllipticCurve(K, [a + 1, 1, a, -19676*a - 82976, 7368038*a + 31070944])
gp (2.8): E = ellinit([a + 1, 1, a, -19676*a - 82976, 7368038*a + 31070944],K)
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
| \(\mathfrak{N} \) | = | \((-a + 4)\) | = | \( \left(a + 4\right) \cdot \left(4 a - 21\right) \) |
| magma: Conductor(E);
sage: E.conductor()
| ||||
| \(N(\mathfrak{N}) \) | = | \( 10 \) | = | \( 2 \cdot 5 \) |
| magma: Norm(Conductor(E));
sage: E.conductor().norm()
| ||||
| \(\mathfrak{D}\) | = | \((187 a + 742)\) | = | \( \left(a + 4\right)^{7} \cdot \left(4 a - 21\right)^{4} \) |
| magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
| ||||
| \(N(\mathfrak{D})\) | = | \( 80000 \) | = | \( 2^{7} \cdot 5^{4} \) |
| magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
| ||||
| \(j\) | = | \( \frac{12145582503}{80000} a - \frac{63396347301}{80000} \) | ||
| magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
| ||||
| \( \text{End} (E) \) | = | \(\Z\) | (no Complex Multiplication ) | |
| magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
| ||||
| \( \text{ST} (E) \) | = | $\mathrm{SU}(2)$ | ||
Mordell-Weil group
Rank not available.magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()
Regulator: not available
magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())
Torsion subgroup
| Structure: | Trivial |
|---|---|
| magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
| |
| magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
| |
Local data at primes of bad reduction
magma: LocalInformation(E);
sage: E.local_data()
| prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|---|
| \( \left(a + 4\right) \) | \(2\) | \(1\) | \(I_{7}\) | Non-split multiplicative | \(1\) | \(1\) | \(7\) | \(7\) |
| \( \left(4 a - 21\right) \) | \(5\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p \) .
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 10.3-a consists of this curve only.