Properties

Label 2.2.88.1-98.1-b3
Base field \(\Q(\sqrt{22}) \)
Conductor norm \( 98 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{22}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 22 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-22, 0, 1]))
 
gp: K = nfinit(Polrev([-22, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+4{x}-6\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,0]),K([4,0]),K([-6,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([1,0]),Polrev([4,0]),Polrev([-6,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,0],K![4,0],K![-6,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-21a-98)\) = \((-3a-14)\cdot(2a+9)\cdot(-2a+9)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 98 \) = \(2\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-21952)\) = \((-3a-14)^{12}\cdot(2a+9)^{3}\cdot(-2a+9)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 481890304 \) = \(2^{12}\cdot7^{3}\cdot7^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{9938375}{21952} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-\frac{32}{9} a + \frac{161}{9} : \frac{640}{27} a - \frac{2995}{27} : 1\right)$ $\left(\frac{16}{81} a + \frac{185}{81} : \frac{304}{729} a + \frac{1895}{729} : 1\right)$
Heights \(1.7481422386464015851358481404006088041\) \(1.8561356318911055905495812903251367229\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(9 : 23 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 2.7824060904205084947737266287851853000 \)
Period: \( 3.9257159468709430520307637303495930307 \)
Tamagawa product: \( 18 \)  =  \(2\cdot3\cdot3\)
Torsion order: \(6\)
Leading coefficient: \( 2.3287777713431993551346132703946248932 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a-14)\) \(2\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\((2a+9)\) \(7\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-2a+9)\) \(7\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 98.1-b consists of curves linked by isogenies of degrees dividing 18.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 14.a6
\(\Q\) 54208.m6