Properties

Label 2.2.88.1-44.1-b2
Base field \(\Q(\sqrt{22}) \)
Conductor norm \( 44 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{22}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 22 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-22, 0, 1]))
 
gp: K = nfinit(Polrev([-22, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, 0, 1]);
 

Weierstrass equation

\({y}^2+a{y}={x}^{3}+{x}^{2}+\left(-11032a+51745\right){x}+1565921a-7344826\)
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([0,1]),K([51745,-11032]),K([-7344826,1565921])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,0]),Polrev([0,1]),Polrev([51745,-11032]),Polrev([-7344826,1565921])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,0],K![0,1],K![51745,-11032],K![-7344826,1565921]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((14a-66)\) = \((-3a-14)^{2}\cdot(7a-33)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 44 \) = \(2^{2}\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-44)\) = \((-3a-14)^{4}\cdot(7a-33)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1936 \) = \(2^{4}\cdot11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{8192}{11} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{10850}{729} a + \frac{50651}{729} : \frac{3272515}{19683} a - \frac{15395611}{19683} : 1\right)$
Height \(2.8466351889798163557825901454682585102\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-28 a + 131 : -590 a + 2765 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.8466351889798163557825901454682585102 \)
Period: \( 11.654201665938048123488760751201390755 \)
Tamagawa product: \( 6 \)  =  \(3\cdot2\)
Torsion order: \(3\)
Leading coefficient: \( 4.7153262113627395646902885016597868998 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a-14)\) \(2\) \(3\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((7a-33)\) \(11\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 44.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 44.a2
\(\Q\) 7744.bc2