Properties

Label 2.2.88.1-144.1-m1
Base field \(\Q(\sqrt{22}) \)
Conductor norm \( 144 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{22}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 22 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-22, 0, 1]))
 
gp: K = nfinit(Polrev([-22, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+a{x}^{2}+\left(-786a+3694\right){x}-51420a+241185\)
sage: E = EllipticCurve([K([0,0]),K([0,1]),K([0,0]),K([3694,-786]),K([241185,-51420])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([0,0]),Polrev([3694,-786]),Polrev([241185,-51420])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,1],K![0,0],K![3694,-786],K![241185,-51420]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((12)\) = \((-3a-14)^{4}\cdot(-a+5)\cdot(a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 144 \) = \(2^{4}\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((576a-2736)\) = \((-3a-14)^{8}\cdot(-a+5)^{2}\cdot(a+5)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 186624 \) = \(2^{8}\cdot3^{2}\cdot3^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{4096}{81} a + \frac{8192}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{338}{49} a + \frac{3021}{98} : \frac{159021}{1372} a - \frac{372933}{686} : 1\right)$
Height \(2.7802007290230404261201770475875611532\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-8 a + 36 : 126 a - 591 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.7802007290230404261201770475875611532 \)
Period: \( 8.3056154163962540724897803659249062939 \)
Tamagawa product: \( 16 \)  =  \(2\cdot2\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 4.9230770187671250161629187126254213155 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a-14)\) \(2\) \(2\) \(I_0^{*}\) Additive \(1\) \(4\) \(8\) \(0\)
\((-a+5)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a+5)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 144.1-m consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.