Properties

Label 2.2.88.1-144.1-g2
Base field \(\Q(\sqrt{22}) \)
Conductor norm \( 144 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{22}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 22 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-22, 0, 1]))
 
gp: K = nfinit(Polrev([-22, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+{x}^{2}+\left(11032a+51745\right){x}+1694014a+7945630\)
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([0,0]),K([51745,11032]),K([7945630,1694014])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,0]),Polrev([0,0]),Polrev([51745,11032]),Polrev([7945630,1694014])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,0],K![0,0],K![51745,11032],K![7945630,1694014]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((12)\) = \((-3a-14)^{4}\cdot(-a+5)\cdot(a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 144 \) = \(2^{4}\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-48)\) = \((-3a-14)^{8}\cdot(-a+5)\cdot(a+5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2304 \) = \(2^{8}\cdot3\cdot3\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2048}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{581}{96} a + \frac{16159}{576} : \frac{6898675}{13824} a + \frac{3595295}{1536} : 1\right)$
Height \(6.4690977102884971560686970097644364765\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-14 a - 66 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 6.4690977102884971560686970097644364765 \)
Period: \( 18.602238951643222078128233801763314336 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 6.4141276365682369281133422755645481469 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a-14)\) \(2\) \(1\) \(I_0^{*}\) Additive \(-1\) \(4\) \(8\) \(0\)
\((-a+5)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a+5)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 144.1-g consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 192.d5
\(\Q\) 5808.s5