Properties

Label 2.2.88.1-144.1-b6
Base field \(\Q(\sqrt{22}) \)
Conductor norm \( 144 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{22}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 22 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-22, 0, 1]))
 
gp: K = nfinit(Polrev([-22, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(1435a-6742\right){x}+66528a-312039\)
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,0]),K([-6742,1435]),K([-312039,66528])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,0]),Polrev([0,0]),Polrev([-6742,1435]),Polrev([-312039,66528])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,0],K![0,0],K![-6742,1435],K![-312039,66528]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((12)\) = \((-3a-14)^{4}\cdot(-a+5)\cdot(a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 144 \) = \(2^{4}\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-685440a-3242304)\) = \((-3a-14)^{12}\cdot(-a+5)^{2}\cdot(a+5)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 176319369216 \) = \(2^{12}\cdot3^{2}\cdot3^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{5187821215713500}{4782969} a + \frac{24333814699525625}{4782969} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(7 a - 40 : 20 a - 77 : 1\right)$ $\left(7 a - 32 : 16 a - 77 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3.6107389059987230331548590798800125878 \)
Tamagawa product: \( 112 \)  =  \(2^{2}\cdot2\cdot( 2 \cdot 7 )\)
Torsion order: \(4\)
Leading coefficient: \( 2.6943424246620030668917283462234578081 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a-14)\) \(2\) \(4\) \(I_{4}^{*}\) Additive \(1\) \(4\) \(12\) \(0\)
\((-a+5)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((a+5)\) \(3\) \(14\) \(I_{14}\) Split multiplicative \(-1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(7\) 7B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 144.1-b consists of curves linked by isogenies of degrees dividing 28.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.