Properties

Label 2.2.88.1-14.2-b1
Base field \(\Q(\sqrt{22}) \)
Conductor norm \( 14 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{22}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 22 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-22, 0, 1]))
 
gp: K = nfinit(Polrev([-22, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-22, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-3221a+15105\right){x}-56343a+264264\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,1]),K([15105,-3221]),K([264264,-56343])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([1,1]),Polrev([15105,-3221]),Polrev([264264,-56343])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,1],K![15105,-3221],K![264264,-56343]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a+6)\) = \((-3a-14)\cdot(2a+9)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 14 \) = \(2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6016a+28416)\) = \((-3a-14)^{15}\cdot(2a+9)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11239424 \) = \(2^{15}\cdot7^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{19062299657}{87808} a - \frac{44634002097}{43904} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(0 : 77 a - 364 : 1\right)$
Height \(0.90994530392902025057533254172483023523\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.90994530392902025057533254172483023523 \)
Period: \( 2.6263188535998233839890951063285048668 \)
Tamagawa product: \( 3 \)  =  \(1\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 1.5285253780210977277870001422781042938 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a-14)\) \(2\) \(1\) \(I_{15}\) Non-split multiplicative \(1\) \(1\) \(15\) \(15\)
\((2a+9)\) \(7\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 14.2-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.