Learn more

Refine search


Results (40 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
784.1-a1 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.5138540523.513854052 1.242335014 5483477316251835008 -\frac{548347731625}{1835008} [a \bigl[a , 1 -1 , 0 0 , 682 -682 , 6990] 6990\bigr] y2+axy=x3x2682x+6990{y}^2+a{x}{y}={x}^{3}-{x}^{2}-682{x}+6990
784.1-a2 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.5138540523.513854052 1.242335014 1562528 -\frac{15625}{28} [a \bigl[a , 1 -1 , 0 0 , 2 -2 , 2] -2\bigr] y2+axy=x3x22x2{y}^2+a{x}{y}={x}^{3}-{x}^{2}-2{x}-2
784.1-a3 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.5138540523.513854052 1.242335014 993837521952 \frac{9938375}{21952} [a \bigl[a , 1 -1 , 0 0 , 18 18 , 46] 46\bigr] y2+axy=x3x2+18x+46{y}^2+a{x}{y}={x}^{3}-{x}^{2}+18{x}+46
784.1-a4 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7569270261.756927026 1.242335014 29287432231928754802a+20709341984650002401 -\frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} [a \bigl[a , 1 -1 , 0 0 , 220a362 220 a - 362 , 2320a3330] 2320 a - 3330\bigr] y2+axy=x3x2+(220a362)x+2320a3330{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(220a-362\right){x}+2320a-3330
784.1-a5 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.5138540523.513854052 1.242335014 4956477625941192 \frac{4956477625}{941192} [a \bigl[a , 1 -1 , 0 0 , 142 -142 , 558] 558\bigr] y2+axy=x3x2142x+558{y}^2+a{x}{y}={x}^{3}-{x}^{2}-142{x}+558
784.1-a6 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7569270261.756927026 1.242335014 39212749209231812555365148804a+13881453277632100013841287201 -\frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} [a \bigl[a , 1 -1 , 0 0 , 520a1422 520 a - 1422 , 16000a+16302] -16000 a + 16302\bigr] y2+axy=x3x2+(520a1422)x16000a+16302{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(520a-1422\right){x}-16000a+16302
784.1-a7 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7569270261.756927026 1.242335014 21876883129007884285775912576832a+96683077573419077024650002401 -\frac{218768831290078842857759125}{76832} a + \frac{9668307757341907702465000}{2401} [a \bigl[a , 1 -1 , 0 0 , 57920a92842 57920 a - 92842 , 9795840a+14293838] -9795840 a + 14293838\bigr] y2+axy=x3x2+(57920a92842)x9795840a+14293838{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(57920a-92842\right){x}-9795840a+14293838
784.1-a8 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.5138540523.513854052 1.242335014 12878762598 \frac{128787625}{98} [a \bigl[a , 1 -1 , 0 0 , 42 -42 , 98] -98\bigr] y2+axy=x3x242x98{y}^2+a{x}{y}={x}^{3}-{x}^{2}-42{x}-98
784.1-a9 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7569270261.756927026 1.242335014 39212749209231812555365148804a+13881453277632100013841287201 \frac{392127492092318125}{55365148804} a + \frac{138814532776321000}{13841287201} [a \bigl[a , 1 -1 , 0 0 , 520a1422 -520 a - 1422 , 16000a+16302] 16000 a + 16302\bigr] y2+axy=x3x2+(520a1422)x+16000a+16302{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-520a-1422\right){x}+16000a+16302
784.1-a10 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.5138540523.513854052 1.242335014 225143905569962525088 \frac{2251439055699625}{25088} [a \bigl[a , 1 -1 , 0 0 , 10922 -10922 , 441166] 441166\bigr] y2+axy=x3x210922x+441166{y}^2+a{x}{y}={x}^{3}-{x}^{2}-10922{x}+441166
784.1-a11 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7569270261.756927026 1.242335014 29287432231928754802a+20709341984650002401 \frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} [a \bigl[a , 1 -1 , 0 0 , 220a362 -220 a - 362 , 2320a3330] -2320 a - 3330\bigr] y2+axy=x3x2+(220a362)x2320a3330{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-220a-362\right){x}-2320a-3330
784.1-a12 784.1-a Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7569270261.756927026 1.242335014 21876883129007884285775912576832a+96683077573419077024650002401 \frac{218768831290078842857759125}{76832} a + \frac{9668307757341907702465000}{2401} [a \bigl[a , 1 -1 , 0 0 , 57920a92842 -57920 a - 92842 , 9795840a+14293838] 9795840 a + 14293838\bigr] y2+axy=x3x2+(57920a92842)x+9795840a+14293838{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-57920a-92842\right){x}+9795840a+14293838
784.1-b1 784.1-b Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 8.3305535878.330553587 1.472647733 6949589220544005249a+9828203328615263849 -\frac{69495892205440052}{49} a + \frac{98282033286152638}{49} [a \bigl[a , a1 a - 1 , 0 0 , 115a122 115 a - 122 , 322a+1587] -322 a + 1587\bigr] y2+axy=x3+(a1)x2+(115a122)x322a+1587{y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(115a-122\right){x}-322a+1587
784.1-b2 784.1-b Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.1652767934.165276793 1.472647733 132826652325764801a+235664569725764801 -\frac{13282665232}{5764801} a + \frac{23566456972}{5764801} [a \bigl[a , a1 a - 1 , 0 0 , 15a+18 15 a + 18 , 30a43] -30 a - 43\bigr] y2+axy=x3+(a1)x2+(15a+18)x30a43{y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(15a+18\right){x}-30a-43
784.1-b3 784.1-b Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 16.6611071716.66110717 1.472647733 45661442401a+144972322401 -\frac{4566144}{2401} a + \frac{14497232}{2401} [a \bigl[a , a1 a - 1 , 0 0 , 5a7 -5 a - 7 , 7a9] -7 a - 9\bigr] y2+axy=x3+(a1)x2+(5a7)x7a9{y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-5a-7\right){x}-7a-9
784.1-b4 784.1-b Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 16.6611071716.66110717 1.472647733 537449336162401a+760658961322401 -\frac{53744933616}{2401} a + \frac{76065896132}{2401} [a \bigl[a , a1 a - 1 , 0 0 , 25a52 -25 a - 52 , 84a+159] 84 a + 159\bigr] y2+axy=x3+(a1)x2+(25a52)x+84a+159{y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-25a-52\right){x}+84a+159
784.1-b5 784.1-b Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.3305535878.330553587 1.472647733 11028889649a+15598182449 \frac{110288896}{49} a + \frac{155981824}{49} [0 \bigl[0 , a+1 -a + 1 , 0 0 , 6a+7 -6 a + 7 , 23a+32] -23 a + 32\bigr] y2=x3+(a+1)x2+(6a+7)x23a+32{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6a+7\right){x}-23a+32
784.1-b6 784.1-b Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 8.3305535878.330553587 1.472647733 11598563883226765764801a+16402429043894265764801 \frac{1159856388322676}{5764801} a + \frac{1640242904389426}{5764801} [a \bigl[a , a a , 0 0 , 194a314 194 a - 314 , 2200a+3186] -2200 a + 3186\bigr] y2+axy=x3+ax2+(194a314)x2200a+3186{y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(194a-314\right){x}-2200a+3186
784.1-c1 784.1-c Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2399198980.239919898 22.7571210422.75712104 1.930361270 47 -\frac{4}{7} [a \bigl[a , 0 0 , a a , 1 -1 , 0] 0\bigr] y2+axy+ay=x3x{y}^2+a{x}{y}+a{y}={x}^{3}-{x}
784.1-c2 784.1-c Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2399198980.239919898 11.3785605211.37856052 1.930361270 43472063256052401a+61478831794962401 -\frac{4347206325605}{2401} a + \frac{6147883179496}{2401} [a \bigl[a , 0 0 , a a , 50a91 50 a - 91 , 274a+370] -274 a + 370\bigr] y2+axy+ay=x3+(50a91)x274a+370{y}^2+a{x}{y}+a{y}={x}^{3}+\left(50a-91\right){x}-274a+370
784.1-c3 784.1-c Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.1199599490.119959949 22.7571210422.75712104 1.930361270 354312249 \frac{3543122}{49} [a \bigl[a , 0 0 , a a , 11 -11 , 10] 10\bigr] y2+axy+ay=x311x+10{y}^2+a{x}{y}+a{y}={x}^{3}-11{x}+10
784.1-c4 784.1-c Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2399198980.239919898 11.3785605211.37856052 1.930361270 43472063256052401a+61478831794962401 \frac{4347206325605}{2401} a + \frac{6147883179496}{2401} [a \bigl[a , 0 0 , a a , 50a91 -50 a - 91 , 274a+370] 274 a + 370\bigr] y2+axy+ay=x3+(50a91)x+274a+370{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-50a-91\right){x}+274a+370
784.1-d1 784.1-d Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0691085761.069108576 10.5451741110.54517411 1.992969164 4327 \frac{432}{7} [a \bigl[a , 1 1 , 0 0 , 1 1 , 0] 0\bigr] y2+axy=x3+x2+x{y}^2+a{x}{y}={x}^{3}+{x}^{2}+{x}
784.1-d2 784.1-d Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.1336385720.133638572 5.2725870575.272587057 1.992969164 297748954627295764801a+421112039907605764801 -\frac{29774895462729}{5764801} a + \frac{42111203990760}{5764801} [a \bigl[a , 1 1 , 0 0 , 90a94 90 a - 94 , 368a+642] -368 a + 642\bigr] y2+axy=x3+x2+(90a94)x368a+642{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(90a-94\right){x}-368a+642
784.1-d3 784.1-d Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 0.2672771440.267277144 10.5451741110.54517411 1.992969164 110904662401 \frac{11090466}{2401} [a \bigl[a , 1 1 , 0 0 , 14 -14 , 10] 10\bigr] y2+axy=x3+x214x+10{y}^2+a{x}{y}={x}^{3}+{x}^{2}-14{x}+10
784.1-d4 784.1-d Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5345542880.534554288 10.5451741110.54517411 1.992969164 74077249 \frac{740772}{49} [a \bigl[a , 1 1 , 0 0 , 4 -4 , 6] -6\bigr] y2+axy=x3+x24x6{y}^2+a{x}{y}={x}^{3}+{x}^{2}-4{x}-6
784.1-d5 784.1-d Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.1336385720.133638572 5.2725870575.272587057 1.992969164 297748954627295764801a+421112039907605764801 \frac{29774895462729}{5764801} a + \frac{42111203990760}{5764801} [a \bigl[a , 1 1 , 0 0 , 90a94 -90 a - 94 , 368a+642] 368 a + 642\bigr] y2+axy=x3+x2+(90a94)x+368a+642{y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-90a-94\right){x}+368a+642
784.1-d6 784.1-d Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0691085761.069108576 2.6362935282.636293528 1.992969164 14434685467 \frac{1443468546}{7} [a \bigl[a , 1 1 , 0 0 , 74 -74 , 286] -286\bigr] y2+axy=x3+x274x286{y}^2+a{x}{y}={x}^{3}+{x}^{2}-74{x}-286
784.1-e1 784.1-e Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 8.3305535878.330553587 1.472647733 11598563883226765764801a+16402429043894265764801 -\frac{1159856388322676}{5764801} a + \frac{1640242904389426}{5764801} [a \bigl[a , a -a , 0 0 , 194a314 -194 a - 314 , 2200a+3186] 2200 a + 3186\bigr] y2+axy=x3ax2+(194a314)x+2200a+3186{y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-194a-314\right){x}+2200a+3186
784.1-e2 784.1-e Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.3305535878.330553587 1.472647733 11028889649a+15598182449 -\frac{110288896}{49} a + \frac{155981824}{49} [0 \bigl[0 , a+1 a + 1 , 0 0 , 6a+7 6 a + 7 , 23a+32] 23 a + 32\bigr] y2=x3+(a+1)x2+(6a+7)x+23a+32{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(6a+7\right){x}+23a+32
784.1-e3 784.1-e Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.1652767934.165276793 1.472647733 132826652325764801a+235664569725764801 \frac{13282665232}{5764801} a + \frac{23566456972}{5764801} [a \bigl[a , a1 -a - 1 , 0 0 , 15a+18 -15 a + 18 , 30a43] 30 a - 43\bigr] y2+axy=x3+(a1)x2+(15a+18)x+30a43{y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-15a+18\right){x}+30a-43
784.1-e4 784.1-e Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 16.6611071716.66110717 1.472647733 45661442401a+144972322401 \frac{4566144}{2401} a + \frac{14497232}{2401} [a \bigl[a , a1 -a - 1 , 0 0 , 5a7 5 a - 7 , 7a9] 7 a - 9\bigr] y2+axy=x3+(a1)x2+(5a7)x+7a9{y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(5a-7\right){x}+7a-9
784.1-e5 784.1-e Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 16.6611071716.66110717 1.472647733 537449336162401a+760658961322401 \frac{53744933616}{2401} a + \frac{76065896132}{2401} [a \bigl[a , a1 -a - 1 , 0 0 , 25a52 25 a - 52 , 84a+159] -84 a + 159\bigr] y2+axy=x3+(a1)x2+(25a52)x84a+159{y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(25a-52\right){x}-84a+159
784.1-e6 784.1-e Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 8.3305535878.330553587 1.472647733 6949589220544005249a+9828203328615263849 \frac{69495892205440052}{49} a + \frac{98282033286152638}{49} [a \bigl[a , a1 -a - 1 , 0 0 , 115a122 -115 a - 122 , 322a+1587] 322 a + 1587\bigr] y2+axy=x3+(a1)x2+(115a122)x+322a+1587{y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-115a-122\right){x}+322a+1587
784.1-f1 784.1-f Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.6807354537.680735453 1.357775030 55171946860128947249a+78024914637686355249 -\frac{551719468601289472}{49} a + \frac{780249146376863552}{49} [0 \bigl[0 , a -a , 0 0 , 1562a3681 1562 a - 3681 , 52607a+96844] -52607 a + 96844\bigr] y2=x3ax2+(1562a3681)x52607a+96844{y}^2={x}^{3}-a{x}^{2}+\left(1562a-3681\right){x}-52607a+96844
784.1-f2 784.1-f Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.6807354537.680735453 1.357775030 13219923200117649a+18683377472117649 -\frac{13219923200}{117649} a + \frac{18683377472}{117649} [0 \bigl[0 , a -a , 0 0 , 22a41 22 a - 41 , 51a+132] -51 a + 132\bigr] y2=x3ax2+(22a41)x51a+132{y}^2={x}^{3}-a{x}^{2}+\left(22a-41\right){x}-51a+132
784.1-f3 784.1-f Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.6807354537.680735453 1.357775030 21068849a+30291249 -\frac{210688}{49} a + \frac{302912}{49} [0 \bigl[0 , a -a , 0 0 , 2a1 2 a - 1 , a4] a - 4\bigr] y2=x3ax2+(2a1)x+a4{y}^2={x}^{3}-a{x}^{2}+\left(2a-1\right){x}+a-4
784.1-f4 784.1-f Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.6807354537.680735453 1.357775030 21068849a+30291249 \frac{210688}{49} a + \frac{302912}{49} [0 \bigl[0 , a a , 0 0 , 2a1 -2 a - 1 , a4] -a - 4\bigr] y2=x3+ax2+(2a1)xa4{y}^2={x}^{3}+a{x}^{2}+\left(-2a-1\right){x}-a-4
784.1-f5 784.1-f Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.6807354537.680735453 1.357775030 13219923200117649a+18683377472117649 \frac{13219923200}{117649} a + \frac{18683377472}{117649} [0 \bigl[0 , a a , 0 0 , 22a41 -22 a - 41 , 51a+132] 51 a + 132\bigr] y2=x3+ax2+(22a41)x+51a+132{y}^2={x}^{3}+a{x}^{2}+\left(-22a-41\right){x}+51a+132
784.1-f6 784.1-f Q(2)\Q(\sqrt{2}) 2472 2^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 7.6807354537.680735453 1.357775030 55171946860128947249a+78024914637686355249 \frac{551719468601289472}{49} a + \frac{780249146376863552}{49} [0 \bigl[0 , a a , 0 0 , 1562a3681 -1562 a - 3681 , 52607a+96844] 52607 a + 96844\bigr] y2=x3+ax2+(1562a3681)x+52607a+96844{y}^2={x}^{3}+a{x}^{2}+\left(-1562a-3681\right){x}+52607a+96844
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.