Properties

Label 2.2.8.1-686.2-g2
Base field \(\Q(\sqrt{2}) \)
Conductor norm \( 686 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 0, 1]))
 
gp: K = nfinit(Polrev([-2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(36a+216\right){x}+64a+756\)
sage: E = EllipticCurve([K([1,0]),K([0,1]),K([0,1]),K([216,36]),K([756,64])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([0,1]),Polrev([216,36]),Polrev([756,64])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,1],K![0,1],K![216,36],K![756,64]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((7a-28)\) = \((a)\cdot(-2a+1)^{2}\cdot(2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 686 \) = \(2\cdot7^{2}\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-322828856a-968486568)\) = \((a)^{6}\cdot(-2a+1)^{10}\cdot(2a+1)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 729529291863881152 \) = \(2^{6}\cdot7^{10}\cdot7^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{59405903367}{322828856} a + \frac{391232728667}{322828856} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.0435038705852844534372336832289153646 \)
Tamagawa product: \( 6 \)  =  \(( 2 \cdot 3 )\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 2.2136059892557924187991917528276416628 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-2a+1)\) \(7\) \(1\) \(II^{*}\) Additive \(-1\) \(2\) \(10\) \(0\)
\((2a+1)\) \(7\) \(1\) \(I_{9}\) Non-split multiplicative \(1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 686.2-g consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.