Properties

Base field \(\Q(\sqrt{2}) \)
Label 2.2.8.1-578.1-d8
Conductor \((17 a)\)
Conductor norm \( 578 \)
CM no
base-change no
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{2}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 2 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 2)
 
gp (2.8): K = nfinit(a^2 - 2);
 

Weierstrass equation

\( y^2 + x y = x^{3} + \left(-230 a - 363\right) x + 2390 a + 3513 \)
magma: E := ChangeRing(EllipticCurve([1, 0, 0, -230*a - 363, 2390*a + 3513]),K);
 
sage: E = EllipticCurve(K, [1, 0, 0, -230*a - 363, 2390*a + 3513])
 
gp (2.8): E = ellinit([1, 0, 0, -230*a - 363, 2390*a + 3513],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((17 a)\) = \( \left(a\right) \cdot \left(-3 a - 1\right) \cdot \left(3 a - 1\right) \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 578 \) = \( 2 \cdot 17^{2} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((2414 a - 544)\) = \( \left(a\right)^{3} \cdot \left(-3 a - 1\right)^{4} \cdot \left(3 a - 1\right) \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\mathfrak{D})\) = \( 11358856 \) = \( 2^{3} \cdot 17^{5} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(j\) = \( \frac{1712717194041788375}{334084} a + \frac{605536970972065000}{83521} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 1 \)
magma: Rank(E);
 
sage: E.rank()
 

Generator: $\left(9 a + 6 : -17 a - 11 : 1\right)$

Height: 1.874461377886242

magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: 1.87446137789

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: \(\Z/6\Z\)
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 
Generator: $\left(3 a + 12 : -5 a + 7 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a\right) \) \(2\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\( \left(-3 a - 1\right) \) \(17\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\( \left(3 a - 1\right) \) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 578.1-d consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.