Learn more

Refine search


Results (22 matches)

  Download displayed columns to          
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
392.1-a1 392.1-a \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.908137285$ 1.284300066 \( -\frac{1159856388322676}{5764801} a + \frac{1640242904389426}{5764801} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -194 a - 314\) , \( -2200 a - 3186\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-194a-314\right){x}-2200a-3186$
392.1-a2 392.1-a \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $14.53019657$ 1.284300066 \( -\frac{110288896}{49} a + \frac{155981824}{49} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 6 a + 7\) , \( -23 a - 32\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(6a+7\right){x}-23a-32$
392.1-a3 392.1-a \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $7.265098286$ 1.284300066 \( \frac{13282665232}{5764801} a + \frac{23566456972}{5764801} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -15 a + 18\) , \( -30 a + 43\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-15a+18\right){x}-30a+43$
392.1-a4 392.1-a \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $14.53019657$ 1.284300066 \( \frac{4566144}{2401} a + \frac{14497232}{2401} \) \( \bigl[a\) , \( a\) , \( 0\) , \( 5 a - 7\) , \( -7 a + 9\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(5a-7\right){x}-7a+9$
392.1-a5 392.1-a \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.632549143$ 1.284300066 \( \frac{53744933616}{2401} a + \frac{76065896132}{2401} \) \( \bigl[a\) , \( a\) , \( 0\) , \( 25 a - 52\) , \( 84 a - 159\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(25a-52\right){x}+84a-159$
392.1-a6 392.1-a \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.908137285$ 1.284300066 \( \frac{69495892205440052}{49} a + \frac{98282033286152638}{49} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -115 a - 122\) , \( -322 a - 1587\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+\left(-115a-122\right){x}-322a-1587$
392.1-b1 392.1-b \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.696738583$ $24.47471212$ 1.507240199 \( \frac{432}{7} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 0\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}$
392.1-b2 392.1-b \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.393477166$ $1.529669507$ 1.507240199 \( -\frac{29774895462729}{5764801} a + \frac{42111203990760}{5764801} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 90 a - 95\) , \( 458 a - 737\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(90a-95\right){x}+458a-737$
392.1-b3 392.1-b \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.696738583$ $6.118678030$ 1.507240199 \( \frac{11090466}{2401} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -15\) , \( -25\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-15{x}-25$
392.1-b4 392.1-b \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.348369291$ $24.47471212$ 1.507240199 \( \frac{740772}{49} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -5\) , \( 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-5{x}+1$
392.1-b5 392.1-b \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.393477166$ $1.529669507$ 1.507240199 \( \frac{29774895462729}{5764801} a + \frac{42111203990760}{5764801} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -90 a - 95\) , \( -458 a - 737\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-90a-95\right){x}-458a-737$
392.1-b6 392.1-b \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.696738583$ $24.47471212$ 1.507240199 \( \frac{1443468546}{7} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -75\) , \( 211\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-75{x}+211$
392.1-c1 392.1-c \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.189921948$ 1.271010641 \( -\frac{4}{7} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -1\) , \( -1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-{x}-1$
392.1-c2 392.1-c \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.594960974$ 1.271010641 \( -\frac{4347206325605}{2401} a + \frac{6147883179496}{2401} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 50 a - 91\) , \( 274 a - 371\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(50a-91\right){x}+274a-371$
392.1-c3 392.1-c \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $7.189921948$ 1.271010641 \( \frac{3543122}{49} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -11\) , \( -11\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-11{x}-11$
392.1-c4 392.1-c \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.594960974$ 1.271010641 \( \frac{4347206325605}{2401} a + \frac{6147883179496}{2401} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -50 a - 91\) , \( -274 a - 371\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-50a-91\right){x}-274a-371$
392.1-d1 392.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.908137285$ 1.284300066 \( -\frac{69495892205440052}{49} a + \frac{98282033286152638}{49} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( 115 a - 122\) , \( 322 a - 1587\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(115a-122\right){x}+322a-1587$
392.1-d2 392.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $7.265098286$ 1.284300066 \( -\frac{13282665232}{5764801} a + \frac{23566456972}{5764801} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( 15 a + 18\) , \( 30 a + 43\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(15a+18\right){x}+30a+43$
392.1-d3 392.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $14.53019657$ 1.284300066 \( -\frac{4566144}{2401} a + \frac{14497232}{2401} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -5 a - 7\) , \( 7 a + 9\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-5a-7\right){x}+7a+9$
392.1-d4 392.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.632549143$ 1.284300066 \( -\frac{53744933616}{2401} a + \frac{76065896132}{2401} \) \( \bigl[a\) , \( -a\) , \( 0\) , \( -25 a - 52\) , \( -84 a - 159\bigr] \) ${y}^2+a{x}{y}={x}^{3}-a{x}^{2}+\left(-25a-52\right){x}-84a-159$
392.1-d5 392.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $14.53019657$ 1.284300066 \( \frac{110288896}{49} a + \frac{155981824}{49} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -6 a + 7\) , \( 23 a - 32\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-6a+7\right){x}+23a-32$
392.1-d6 392.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.908137285$ 1.284300066 \( \frac{1159856388322676}{5764801} a + \frac{1640242904389426}{5764801} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 194 a - 314\) , \( 2200 a - 3186\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(194a-314\right){x}+2200a-3186$
  Download displayed columns to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.