# Properties

 Base field $$\Q(\sqrt{2})$$ Label 2.2.8.1-3600.1-g8 Conductor $$(60)$$ Conductor norm $$3600$$ CM no base-change yes: 240.b1,960.p1 Q-curve yes Torsion order $$4$$ Rank $$0$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Base field $$\Q(\sqrt{2})$$

Generator $$a$$, with minimal polynomial $$x^{2} - 2$$; class number $$1$$.

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 2)

gp: K = nfinit(a^2 - 2);

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);

## Weierstrass equation

$$y^2+axy=x^{3}-x^{2}-21334x+1202942$$
sage: E = EllipticCurve(K, [a, -1, 0, -21334, 1202942])

gp: E = ellinit([a, -1, 0, -21334, 1202942],K)

magma: E := ChangeRing(EllipticCurve([a, -1, 0, -21334, 1202942]),K);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 $$\mathfrak{N}$$ = $$(60)$$ = $$\left(a\right)^{4} \cdot \left(3\right) \cdot \left(5\right)$$ sage: E.conductor()  magma: Conductor(E); $$N(\mathfrak{N})$$ = $$3600$$ = $$2^{4} \cdot 9 \cdot 25$$ sage: E.conductor().norm()  magma: Norm(Conductor(E)); $$\mathfrak{D}$$ = $$(5184000)$$ = $$\left(a\right)^{18} \cdot \left(3\right)^{4} \cdot \left(5\right)^{3}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); $$N(\mathfrak{D})$$ = $$26873856000000$$ = $$2^{18} \cdot 9^{4} \cdot 25^{3}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); $$j$$ = $$\frac{16778985534208729}{81000}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); $$\text{End} (E)$$ = $$\Z$$ (no Complex Multiplication ) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); $$\text{ST} (E)$$ = $\mathrm{SU}(2)$

## Mordell-Weil group

Rank: $$0$$

sage: E.rank()

magma: Rank(E);

sage: gens = E.gens(); gens

magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;

sage: E.regulator_of_points(gens)

magma: Regulator(gens);

## Torsion subgroup

Structure: $$\Z/4\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); $\left(86 : -43 a - 24 : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(a\right)$$ $$2$$ $$4$$ $$I_{10}^*$$ Additive $$1$$ $$4$$ $$18$$ $$6$$
$$\left(3\right)$$ $$9$$ $$4$$ $$I_{4}$$ Split multiplicative $$-1$$ $$1$$ $$4$$ $$4$$
$$\left(5\right)$$ $$25$$ $$3$$ $$I_{3}$$ Split multiplicative $$-1$$ $$1$$ $$3$$ $$3$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2B
$$3$$ 3B

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 3600.1-g consists of curves linked by isogenies of degrees dividing 12.

## Base change

This curve is the base-change of elliptic curves 240.b1, 960.p1, defined over $$\Q$$, so it is also a $$\Q$$-curve.