Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
3600.1-a1 |
3600.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.750549845$ |
2.033126395 |
\( -\frac{77824}{75} a - \frac{8192}{25} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a - 3\) , \( -5 a - 8\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-3\right){x}-5a-8$ |
3600.1-a2 |
3600.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$11.50109969$ |
2.033126395 |
\( \frac{32153888}{15} a + \frac{136532464}{45} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 10 a - 16\) , \( -20 a + 27\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a-16\right){x}-20a+27$ |
3600.1-b1 |
3600.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.184365542$ |
$24.51599364$ |
3.196055094 |
\( -\frac{4554752}{15} a + \frac{19595264}{45} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -12 a - 18\) , \( 18 a + 27\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-12a-18\right){x}+18a+27$ |
3600.1-b2 |
3600.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.368731084$ |
$24.51599364$ |
3.196055094 |
\( \frac{242852032}{25} a + \frac{1030477264}{75} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 5 a - 11\) , \( -3 a + 8\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(5a-11\right){x}-3a+8$ |
3600.1-c1 |
3600.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{8} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$1.577788215$ |
2.231329492 |
\( -\frac{67647399956}{1875} a + \frac{95664054076}{1875} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -10 a - 50\) , \( -50 a - 200\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-10a-50\right){x}-50a-200$ |
3600.1-c2 |
3600.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$12.62230572$ |
2.231329492 |
\( -\frac{118784}{135} a + \frac{1933312}{405} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -6 a - 10\) , \( -12 a - 15\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-6a-10\right){x}-12a-15$ |
3600.1-c3 |
3600.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$4$ |
\( 2^{2} \) |
$1$ |
$6.311152861$ |
2.231329492 |
\( \frac{583258208}{225} a + \frac{275765456}{75} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -25 a - 35\) , \( -80 a - 116\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-25a-35\right){x}-80a-116$ |
3600.1-c4 |
3600.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$16$ |
\( 1 \) |
$1$ |
$1.577788215$ |
2.231329492 |
\( \frac{285884843213476}{15} a + \frac{404302222551364}{15} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -46 a + 31\) , \( 436 a - 685\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-46a+31\right){x}+436a-685$ |
3600.1-d1 |
3600.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$4.463033054$ |
1.577920468 |
\( -\frac{865504}{675} a - \frac{3363568}{2025} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -3 a\) , \( -4 a + 1\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}-3a{x}-4a+1$ |
3600.1-d2 |
3600.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$8.926066109$ |
1.577920468 |
\( \frac{276826112}{45} a + \frac{130648064}{15} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -13\) , \( -9 a + 2\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-13{x}-9a+2$ |
3600.1-e1 |
3600.1-e |
$8$ |
$16$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{32} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$1.273994615$ |
1.801700464 |
\( -\frac{147281603041}{215233605} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -441\) , \( 6598\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-441{x}+6598$ |
3600.1-e2 |
3600.1-e |
$8$ |
$16$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.095978463$ |
1.801700464 |
\( -\frac{1}{15} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -1\) , \( -2\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}-2$ |
3600.1-e3 |
3600.1-e |
$8$ |
$16$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{16} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$1.273994615$ |
1.801700464 |
\( \frac{4733169839}{3515625} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( 139\) , \( 362\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+139{x}+362$ |
3600.1-e4 |
3600.1-e |
$8$ |
$16$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{8} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$5.095978463$ |
1.801700464 |
\( \frac{111284641}{50625} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -41\) , \( 38\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-41{x}+38$ |
3600.1-e5 |
3600.1-e |
$8$ |
$16$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$5.095978463$ |
1.801700464 |
\( \frac{13997521}{225} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -21\) , \( -38\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-21{x}-38$ |
3600.1-e6 |
3600.1-e |
$8$ |
$16$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{16} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$5.095978463$ |
1.801700464 |
\( \frac{272223782641}{164025} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -541\) , \( 4738\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-541{x}+4738$ |
3600.1-e7 |
3600.1-e |
$8$ |
$16$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$1.273994615$ |
1.801700464 |
\( \frac{56667352321}{15} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -321\) , \( -2258\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-321{x}-2258$ |
3600.1-e8 |
3600.1-e |
$8$ |
$16$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$5.095978463$ |
1.801700464 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[a\) , \( 0\) , \( a\) , \( -8641\) , \( 307678\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-8641{x}+307678$ |
3600.1-f1 |
3600.1-f |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{12} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.366392344$ |
0.836646036 |
\( \frac{24897088}{18225} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 48 a + 74\) , \( -126 a - 176\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(48a+74\right){x}-126a-176$ |
3600.1-f2 |
3600.1-f |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{6} \cdot 5^{8} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$4.732784688$ |
0.836646036 |
\( \frac{36594368}{16875} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -56 a - 82\) , \( -134 a - 188\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-56a-82\right){x}-134a-188$ |
3600.1-g1 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{36} \cdot 3^{2} \cdot 5^{6} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$2.683744567$ |
2.846540973 |
\( -\frac{273359449}{1536000} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -54\) , \( 510\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-54{x}+510$ |
3600.1-g2 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{20} \cdot 3^{6} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$2.683744567$ |
2.846540973 |
\( \frac{357911}{2160} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 6\) , \( -18\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+6{x}-18$ |
3600.1-g3 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{24} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.670936141$ |
2.846540973 |
\( \frac{10316097499609}{5859375000} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -1814\) , \( 4350\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1814{x}+4350$ |
3600.1-g4 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{14} \cdot 3^{24} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$2.683744567$ |
2.846540973 |
\( \frac{35578826569}{5314410} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -274\) , \( 1550\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-274{x}+1550$ |
3600.1-g5 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{16} \cdot 3^{12} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$2.683744567$ |
2.846540973 |
\( \frac{702595369}{72900} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -74\) , \( -210\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-74{x}-210$ |
3600.1-g6 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{24} \cdot 3^{4} \cdot 5^{12} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$2.683744567$ |
2.846540973 |
\( \frac{4102915888729}{9000000} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -1334\) , \( 18942\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1334{x}+18942$ |
3600.1-g7 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{14} \cdot 3^{6} \cdot 5^{8} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$0.670936141$ |
2.846540973 |
\( \frac{2656166199049}{33750} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -1154\) , \( -14898\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1154{x}-14898$ |
3600.1-g8 |
3600.1-g |
$8$ |
$12$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{18} \cdot 3^{8} \cdot 5^{6} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$2.683744567$ |
2.846540973 |
\( \frac{16778985534208729}{81000} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -21334\) , \( 1202942\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-21334{x}+1202942$ |
3600.1-h1 |
3600.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$12.56719702$ |
2.221587558 |
\( -\frac{161792}{15} a + \frac{772096}{45} \) |
\( \bigl[0\) , \( a\) , \( 0\) , \( -2 a - 4\) , \( -2 a - 3\bigr] \) |
${y}^2={x}^{3}+a{x}^{2}+\left(-2a-4\right){x}-2a-3$ |
3600.1-h2 |
3600.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$12.56719702$ |
2.221587558 |
\( \frac{22335584}{75} a + \frac{10601168}{25} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -9 a - 12\) , \( -16 a - 23\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a-12\right){x}-16a-23$ |
3600.1-i1 |
3600.1-i |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.750549845$ |
2.033126395 |
\( \frac{77824}{75} a - \frac{8192}{25} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4 a - 3\) , \( 5 a - 8\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a-3\right){x}+5a-8$ |
3600.1-i2 |
3600.1-i |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$11.50109969$ |
2.033126395 |
\( -\frac{32153888}{15} a + \frac{136532464}{45} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -10 a - 16\) , \( 20 a + 27\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a-16\right){x}+20a+27$ |
3600.1-j1 |
3600.1-j |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$12.56719702$ |
2.221587558 |
\( -\frac{22335584}{75} a + \frac{10601168}{25} \) |
\( \bigl[a\) , \( a + 1\) , \( a\) , \( 9 a - 12\) , \( 16 a - 23\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-12\right){x}+16a-23$ |
3600.1-j2 |
3600.1-j |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$12.56719702$ |
2.221587558 |
\( \frac{161792}{15} a + \frac{772096}{45} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 2 a - 4\) , \( 2 a - 3\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(2a-4\right){x}+2a-3$ |
3600.1-k1 |
3600.1-k |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{16} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.760464508$ |
$2.911019061$ |
3.130682295 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -20\) , \( 300\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-20{x}+300$ |
3600.1-k2 |
3600.1-k |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.380232254$ |
$2.911019061$ |
3.130682295 |
\( \frac{54607676}{32805} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 20\) , \( -10\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+20{x}-10$ |
3600.1-k3 |
3600.1-k |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$0.760464508$ |
$11.64407624$ |
3.130682295 |
\( \frac{3631696}{2025} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -5\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-5{x}$ |
3600.1-k4 |
3600.1-k |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{8} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1.520929017$ |
$11.64407624$ |
3.130682295 |
\( \frac{868327204}{5625} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -50\) , \( 144\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-50{x}+144$ |
3600.1-k5 |
3600.1-k |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.520929017$ |
$5.822038123$ |
3.130682295 |
\( \frac{24918016}{45} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -15\) , \( -18\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-15{x}-18$ |
3600.1-k6 |
3600.1-k |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.760464508$ |
$11.64407624$ |
3.130682295 |
\( \frac{1770025017602}{75} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -800\) , \( 8844\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-800{x}+8844$ |
3600.1-l1 |
3600.1-l |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$4.463033054$ |
1.577920468 |
\( \frac{865504}{675} a - \frac{3363568}{2025} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 3 a\) , \( 4 a + 1\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+3a{x}+4a+1$ |
3600.1-l2 |
3600.1-l |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$8.926066109$ |
1.577920468 |
\( -\frac{276826112}{45} a + \frac{130648064}{15} \) |
\( \bigl[0\) , \( a - 1\) , \( 0\) , \( -13\) , \( 9 a + 2\bigr] \) |
${y}^2={x}^{3}+\left(a-1\right){x}^{2}-13{x}+9a+2$ |
3600.1-m1 |
3600.1-m |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 1 \) |
$0.891621139$ |
$15.64258266$ |
2.465550068 |
\( \frac{21296}{15} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+{x}$ |
3600.1-m2 |
3600.1-m |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \) |
$0.445810569$ |
$15.64258266$ |
2.465550068 |
\( \frac{470596}{225} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -4\) , \( 2\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-4{x}+2$ |
3600.1-m3 |
3600.1-m |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{8} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.222905284$ |
$3.910645665$ |
2.465550068 |
\( \frac{136835858}{1875} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -34\) , \( -70\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-34{x}-70$ |
3600.1-m4 |
3600.1-m |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.222905284$ |
$15.64258266$ |
2.465550068 |
\( \frac{546718898}{405} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -54\) , \( 162\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}-54{x}+162$ |
3600.1-n1 |
3600.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$16$ |
\( 1 \) |
$1$ |
$1.577788215$ |
2.231329492 |
\( -\frac{285884843213476}{15} a + \frac{404302222551364}{15} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 46 a + 31\) , \( -436 a - 685\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(46a+31\right){x}-436a-685$ |
3600.1-n2 |
3600.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{2} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$12.62230572$ |
2.231329492 |
\( \frac{118784}{135} a + \frac{1933312}{405} \) |
\( \bigl[0\) , \( -a\) , \( 0\) , \( 6 a - 10\) , \( 12 a - 15\bigr] \) |
${y}^2={x}^{3}-a{x}^{2}+\left(6a-10\right){x}+12a-15$ |
3600.1-n3 |
3600.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{4} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$4$ |
\( 2^{2} \) |
$1$ |
$6.311152861$ |
2.231329492 |
\( -\frac{583258208}{225} a + \frac{275765456}{75} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( 25 a - 35\) , \( 80 a - 116\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(25a-35\right){x}+80a-116$ |
3600.1-n4 |
3600.1-n |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
3600.1 |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{8} \) |
$1.95776$ |
$(a), (3), (5)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$1.577788215$ |
2.231329492 |
\( \frac{67647399956}{1875} a + \frac{95664054076}{1875} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( 10 a - 50\) , \( 50 a - 200\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(10a-50\right){x}+50a-200$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.