Learn more

Refine search


Results (1-50 of 52 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
3600.1-a1 3600.1-a \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.750549845$ 2.033126395 \( -\frac{77824}{75} a - \frac{8192}{25} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -4 a - 3\) , \( -5 a - 8\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-3\right){x}-5a-8$
3600.1-a2 3600.1-a \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.50109969$ 2.033126395 \( \frac{32153888}{15} a + \frac{136532464}{45} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 10 a - 16\) , \( -20 a + 27\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a-16\right){x}-20a+27$
3600.1-b1 3600.1-b \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.184365542$ $24.51599364$ 3.196055094 \( -\frac{4554752}{15} a + \frac{19595264}{45} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -12 a - 18\) , \( 18 a + 27\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-12a-18\right){x}+18a+27$
3600.1-b2 3600.1-b \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.368731084$ $24.51599364$ 3.196055094 \( \frac{242852032}{25} a + \frac{1030477264}{75} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 5 a - 11\) , \( -3 a + 8\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(5a-11\right){x}-3a+8$
3600.1-c1 3600.1-c \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.577788215$ 2.231329492 \( -\frac{67647399956}{1875} a + \frac{95664054076}{1875} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -10 a - 50\) , \( -50 a - 200\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-10a-50\right){x}-50a-200$
3600.1-c2 3600.1-c \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $12.62230572$ 2.231329492 \( -\frac{118784}{135} a + \frac{1933312}{405} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -6 a - 10\) , \( -12 a - 15\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-6a-10\right){x}-12a-15$
3600.1-c3 3600.1-c \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.311152861$ 2.231329492 \( \frac{583258208}{225} a + \frac{275765456}{75} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -25 a - 35\) , \( -80 a - 116\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-25a-35\right){x}-80a-116$
3600.1-c4 3600.1-c \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.577788215$ 2.231329492 \( \frac{285884843213476}{15} a + \frac{404302222551364}{15} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -46 a + 31\) , \( 436 a - 685\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-46a+31\right){x}+436a-685$
3600.1-d1 3600.1-d \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.463033054$ 1.577920468 \( -\frac{865504}{675} a - \frac{3363568}{2025} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -3 a\) , \( -4 a + 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}-3a{x}-4a+1$
3600.1-d2 3600.1-d \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.926066109$ 1.577920468 \( \frac{276826112}{45} a + \frac{130648064}{15} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -13\) , \( -9 a + 2\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}-13{x}-9a+2$
3600.1-e1 3600.1-e \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.273994615$ 1.801700464 \( -\frac{147281603041}{215233605} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -441\) , \( 6598\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-441{x}+6598$
3600.1-e2 3600.1-e \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.095978463$ 1.801700464 \( -\frac{1}{15} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -1\) , \( -2\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}-2$
3600.1-e3 3600.1-e \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.273994615$ 1.801700464 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 139\) , \( 362\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+139{x}+362$
3600.1-e4 3600.1-e \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $5.095978463$ 1.801700464 \( \frac{111284641}{50625} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -41\) , \( 38\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-41{x}+38$
3600.1-e5 3600.1-e \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.095978463$ 1.801700464 \( \frac{13997521}{225} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -21\) , \( -38\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-21{x}-38$
3600.1-e6 3600.1-e \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $5.095978463$ 1.801700464 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -541\) , \( 4738\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-541{x}+4738$
3600.1-e7 3600.1-e \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.273994615$ 1.801700464 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -321\) , \( -2258\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-321{x}-2258$
3600.1-e8 3600.1-e \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $5.095978463$ 1.801700464 \( \frac{1114544804970241}{405} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -8641\) , \( 307678\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-8641{x}+307678$
3600.1-f1 3600.1-f \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.366392344$ 0.836646036 \( \frac{24897088}{18225} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 48 a + 74\) , \( -126 a - 176\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(48a+74\right){x}-126a-176$
3600.1-f2 3600.1-f \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.732784688$ 0.836646036 \( \frac{36594368}{16875} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -56 a - 82\) , \( -134 a - 188\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-56a-82\right){x}-134a-188$
3600.1-g1 3600.1-g \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.683744567$ 2.846540973 \( -\frac{273359449}{1536000} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -54\) , \( 510\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-54{x}+510$
3600.1-g2 3600.1-g \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.683744567$ 2.846540973 \( \frac{357911}{2160} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 6\) , \( -18\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+6{x}-18$
3600.1-g3 3600.1-g \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.670936141$ 2.846540973 \( \frac{10316097499609}{5859375000} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -1814\) , \( 4350\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1814{x}+4350$
3600.1-g4 3600.1-g \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.683744567$ 2.846540973 \( \frac{35578826569}{5314410} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -274\) , \( 1550\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-274{x}+1550$
3600.1-g5 3600.1-g \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.683744567$ 2.846540973 \( \frac{702595369}{72900} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -74\) , \( -210\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-74{x}-210$
3600.1-g6 3600.1-g \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.683744567$ 2.846540973 \( \frac{4102915888729}{9000000} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -1334\) , \( 18942\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1334{x}+18942$
3600.1-g7 3600.1-g \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.670936141$ 2.846540973 \( \frac{2656166199049}{33750} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -1154\) , \( -14898\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-1154{x}-14898$
3600.1-g8 3600.1-g \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.683744567$ 2.846540973 \( \frac{16778985534208729}{81000} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -21334\) , \( 1202942\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-21334{x}+1202942$
3600.1-h1 3600.1-h \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.56719702$ 2.221587558 \( -\frac{161792}{15} a + \frac{772096}{45} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -2 a - 4\) , \( -2 a - 3\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-2a-4\right){x}-2a-3$
3600.1-h2 3600.1-h \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.56719702$ 2.221587558 \( \frac{22335584}{75} a + \frac{10601168}{25} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -9 a - 12\) , \( -16 a - 23\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a-12\right){x}-16a-23$
3600.1-i1 3600.1-i \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.750549845$ 2.033126395 \( \frac{77824}{75} a - \frac{8192}{25} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 4 a - 3\) , \( 5 a - 8\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a-3\right){x}+5a-8$
3600.1-i2 3600.1-i \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.50109969$ 2.033126395 \( -\frac{32153888}{15} a + \frac{136532464}{45} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -10 a - 16\) , \( 20 a + 27\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a-16\right){x}+20a+27$
3600.1-j1 3600.1-j \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.56719702$ 2.221587558 \( -\frac{22335584}{75} a + \frac{10601168}{25} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( 9 a - 12\) , \( 16 a - 23\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-12\right){x}+16a-23$
3600.1-j2 3600.1-j \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.56719702$ 2.221587558 \( \frac{161792}{15} a + \frac{772096}{45} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 2 a - 4\) , \( 2 a - 3\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(2a-4\right){x}+2a-3$
3600.1-k1 3600.1-k \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.760464508$ $2.911019061$ 3.130682295 \( -\frac{27995042}{1171875} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -20\) , \( 300\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-20{x}+300$
3600.1-k2 3600.1-k \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.380232254$ $2.911019061$ 3.130682295 \( \frac{54607676}{32805} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 20\) , \( -10\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+20{x}-10$
3600.1-k3 3600.1-k \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.760464508$ $11.64407624$ 3.130682295 \( \frac{3631696}{2025} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -5\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-5{x}$
3600.1-k4 3600.1-k \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.520929017$ $11.64407624$ 3.130682295 \( \frac{868327204}{5625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -50\) , \( 144\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-50{x}+144$
3600.1-k5 3600.1-k \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.520929017$ $5.822038123$ 3.130682295 \( \frac{24918016}{45} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -15\) , \( -18\bigr] \) ${y}^2={x}^{3}-{x}^{2}-15{x}-18$
3600.1-k6 3600.1-k \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.760464508$ $11.64407624$ 3.130682295 \( \frac{1770025017602}{75} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -800\) , \( 8844\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-800{x}+8844$
3600.1-l1 3600.1-l \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.463033054$ 1.577920468 \( \frac{865504}{675} a - \frac{3363568}{2025} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 3 a\) , \( 4 a + 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+3a{x}+4a+1$
3600.1-l2 3600.1-l \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.926066109$ 1.577920468 \( -\frac{276826112}{45} a + \frac{130648064}{15} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -13\) , \( 9 a + 2\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}-13{x}+9a+2$
3600.1-m1 3600.1-m \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.891621139$ $15.64258266$ 2.465550068 \( \frac{21296}{15} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+{x}$
3600.1-m2 3600.1-m \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.445810569$ $15.64258266$ 2.465550068 \( \frac{470596}{225} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -4\) , \( 2\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-4{x}+2$
3600.1-m3 3600.1-m \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.222905284$ $3.910645665$ 2.465550068 \( \frac{136835858}{1875} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -34\) , \( -70\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-34{x}-70$
3600.1-m4 3600.1-m \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.222905284$ $15.64258266$ 2.465550068 \( \frac{546718898}{405} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -54\) , \( 162\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-54{x}+162$
3600.1-n1 3600.1-n \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.577788215$ 2.231329492 \( -\frac{285884843213476}{15} a + \frac{404302222551364}{15} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 46 a + 31\) , \( -436 a - 685\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(46a+31\right){x}-436a-685$
3600.1-n2 3600.1-n \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $12.62230572$ 2.231329492 \( \frac{118784}{135} a + \frac{1933312}{405} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 6 a - 10\) , \( 12 a - 15\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(6a-10\right){x}+12a-15$
3600.1-n3 3600.1-n \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.311152861$ 2.231329492 \( -\frac{583258208}{225} a + \frac{275765456}{75} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( 25 a - 35\) , \( 80 a - 116\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(25a-35\right){x}+80a-116$
3600.1-n4 3600.1-n \(\Q(\sqrt{2}) \) \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.577788215$ 2.231329492 \( \frac{67647399956}{1875} a + \frac{95664054076}{1875} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( 10 a - 50\) , \( 50 a - 200\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(10a-50\right){x}+50a-200$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.