Learn more

Refine search


Results (1-50 of 52 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
3600.1-a1 3600.1-a Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.7505498455.750549845 2.033126395 7782475a819225 -\frac{77824}{75} a - \frac{8192}{25} [0 \bigl[0 , a1 a - 1 , 0 0 , 4a3 -4 a - 3 , 5a8] -5 a - 8\bigr] y2=x3+(a1)x2+(4a3)x5a8{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-4a-3\right){x}-5a-8
3600.1-a2 3600.1-a Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.5010996911.50109969 2.033126395 3215388815a+13653246445 \frac{32153888}{15} a + \frac{136532464}{45} [a \bigl[a , a1 a - 1 , a a , 10a16 10 a - 16 , 20a+27] -20 a + 27\bigr] y2+axy+ay=x3+(a1)x2+(10a16)x20a+27{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a-16\right){x}-20a+27
3600.1-b1 3600.1-b Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1843655420.184365542 24.5159936424.51599364 3.196055094 455475215a+1959526445 -\frac{4554752}{15} a + \frac{19595264}{45} [0 \bigl[0 , a a , 0 0 , 12a18 -12 a - 18 , 18a+27] 18 a + 27\bigr] y2=x3+ax2+(12a18)x+18a+27{y}^2={x}^{3}+a{x}^{2}+\left(-12a-18\right){x}+18a+27
3600.1-b2 3600.1-b Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3687310840.368731084 24.5159936424.51599364 3.196055094 24285203225a+103047726475 \frac{242852032}{25} a + \frac{1030477264}{75} [a \bigl[a , 1 -1 , 0 0 , 5a11 5 a - 11 , 3a+8] -3 a + 8\bigr] y2+axy=x3x2+(5a11)x3a+8{y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(5a-11\right){x}-3a+8
3600.1-c1 3600.1-c Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.5777882151.577788215 2.231329492 676473999561875a+956640540761875 -\frac{67647399956}{1875} a + \frac{95664054076}{1875} [a \bigl[a , a+1 -a + 1 , 0 0 , 10a50 -10 a - 50 , 50a200] -50 a - 200\bigr] y2+axy=x3+(a+1)x2+(10a50)x50a200{y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-10a-50\right){x}-50a-200
3600.1-c2 3600.1-c Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 12.6223057212.62230572 2.231329492 118784135a+1933312405 -\frac{118784}{135} a + \frac{1933312}{405} [0 \bigl[0 , a a , 0 0 , 6a10 -6 a - 10 , 12a15] -12 a - 15\bigr] y2=x3+ax2+(6a10)x12a15{y}^2={x}^{3}+a{x}^{2}+\left(-6a-10\right){x}-12a-15
3600.1-c3 3600.1-c Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 6.3111528616.311152861 2.231329492 583258208225a+27576545675 \frac{583258208}{225} a + \frac{275765456}{75} [a \bigl[a , a+1 -a + 1 , 0 0 , 25a35 -25 a - 35 , 80a116] -80 a - 116\bigr] y2+axy=x3+(a+1)x2+(25a35)x80a116{y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-25a-35\right){x}-80a-116
3600.1-c4 3600.1-c Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.5777882151.577788215 2.231329492 28588484321347615a+40430222255136415 \frac{285884843213476}{15} a + \frac{404302222551364}{15} [a \bigl[a , 1 -1 , a a , 46a+31 -46 a + 31 , 436a685] 436 a - 685\bigr] y2+axy+ay=x3x2+(46a+31)x+436a685{y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-46a+31\right){x}+436a-685
3600.1-d1 3600.1-d Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.4630330544.463033054 1.577920468 865504675a33635682025 -\frac{865504}{675} a - \frac{3363568}{2025} [a \bigl[a , a1 a - 1 , a a , 3a -3 a , 4a+1] -4 a + 1\bigr] y2+axy+ay=x3+(a1)x23ax4a+1{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}-3a{x}-4a+1
3600.1-d2 3600.1-d Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.9260661098.926066109 1.577920468 27682611245a+13064806415 \frac{276826112}{45} a + \frac{130648064}{15} [0 \bigl[0 , a1 -a - 1 , 0 0 , 13 -13 , 9a+2] -9 a + 2\bigr] y2=x3+(a1)x213x9a+2{y}^2={x}^{3}+\left(-a-1\right){x}^{2}-13{x}-9a+2
3600.1-e1 3600.1-e Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.2739946151.273994615 1.801700464 147281603041215233605 -\frac{147281603041}{215233605} [a \bigl[a , 0 0 , a a , 441 -441 , 6598] 6598\bigr] y2+axy+ay=x3441x+6598{y}^2+a{x}{y}+a{y}={x}^{3}-441{x}+6598
3600.1-e2 3600.1-e Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.0959784635.095978463 1.801700464 115 -\frac{1}{15} [a \bigl[a , 0 0 , a a , 1 -1 , 2] -2\bigr] y2+axy+ay=x3x2{y}^2+a{x}{y}+a{y}={x}^{3}-{x}-2
3600.1-e3 3600.1-e Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.2739946151.273994615 1.801700464 47331698393515625 \frac{4733169839}{3515625} [a \bigl[a , 0 0 , a a , 139 139 , 362] 362\bigr] y2+axy+ay=x3+139x+362{y}^2+a{x}{y}+a{y}={x}^{3}+139{x}+362
3600.1-e4 3600.1-e Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 5.0959784635.095978463 1.801700464 11128464150625 \frac{111284641}{50625} [a \bigl[a , 0 0 , a a , 41 -41 , 38] 38\bigr] y2+axy+ay=x341x+38{y}^2+a{x}{y}+a{y}={x}^{3}-41{x}+38
3600.1-e5 3600.1-e Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.0959784635.095978463 1.801700464 13997521225 \frac{13997521}{225} [a \bigl[a , 0 0 , a a , 21 -21 , 38] -38\bigr] y2+axy+ay=x321x38{y}^2+a{x}{y}+a{y}={x}^{3}-21{x}-38
3600.1-e6 3600.1-e Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 5.0959784635.095978463 1.801700464 272223782641164025 \frac{272223782641}{164025} [a \bigl[a , 0 0 , a a , 541 -541 , 4738] 4738\bigr] y2+axy+ay=x3541x+4738{y}^2+a{x}{y}+a{y}={x}^{3}-541{x}+4738
3600.1-e7 3600.1-e Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.2739946151.273994615 1.801700464 5666735232115 \frac{56667352321}{15} [a \bigl[a , 0 0 , a a , 321 -321 , 2258] -2258\bigr] y2+axy+ay=x3321x2258{y}^2+a{x}{y}+a{y}={x}^{3}-321{x}-2258
3600.1-e8 3600.1-e Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 5.0959784635.095978463 1.801700464 1114544804970241405 \frac{1114544804970241}{405} [a \bigl[a , 0 0 , a a , 8641 -8641 , 307678] 307678\bigr] y2+axy+ay=x38641x+307678{y}^2+a{x}{y}+a{y}={x}^{3}-8641{x}+307678
3600.1-f1 3600.1-f Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.3663923442.366392344 0.836646036 2489708818225 \frac{24897088}{18225} [0 \bigl[0 , a+1 -a + 1 , 0 0 , 48a+74 48 a + 74 , 126a176] -126 a - 176\bigr] y2=x3+(a+1)x2+(48a+74)x126a176{y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(48a+74\right){x}-126a-176
3600.1-f2 3600.1-f Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.7327846884.732784688 0.836646036 3659436816875 \frac{36594368}{16875} [0 \bigl[0 , a1 a - 1 , 0 0 , 56a82 -56 a - 82 , 134a188] -134 a - 188\bigr] y2=x3+(a1)x2+(56a82)x134a188{y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-56a-82\right){x}-134a-188
3600.1-g1 3600.1-g Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.6837445672.683744567 2.846540973 2733594491536000 -\frac{273359449}{1536000} [a \bigl[a , 1 -1 , 0 0 , 54 -54 , 510] 510\bigr] y2+axy=x3x254x+510{y}^2+a{x}{y}={x}^{3}-{x}^{2}-54{x}+510
3600.1-g2 3600.1-g Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.6837445672.683744567 2.846540973 3579112160 \frac{357911}{2160} [a \bigl[a , 1 -1 , 0 0 , 6 6 , 18] -18\bigr] y2+axy=x3x2+6x18{y}^2+a{x}{y}={x}^{3}-{x}^{2}+6{x}-18
3600.1-g3 3600.1-g Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6709361410.670936141 2.846540973 103160974996095859375000 \frac{10316097499609}{5859375000} [a \bigl[a , 1 -1 , 0 0 , 1814 -1814 , 4350] 4350\bigr] y2+axy=x3x21814x+4350{y}^2+a{x}{y}={x}^{3}-{x}^{2}-1814{x}+4350
3600.1-g4 3600.1-g Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.6837445672.683744567 2.846540973 355788265695314410 \frac{35578826569}{5314410} [a \bigl[a , 1 -1 , 0 0 , 274 -274 , 1550] 1550\bigr] y2+axy=x3x2274x+1550{y}^2+a{x}{y}={x}^{3}-{x}^{2}-274{x}+1550
3600.1-g5 3600.1-g Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.6837445672.683744567 2.846540973 70259536972900 \frac{702595369}{72900} [a \bigl[a , 1 -1 , 0 0 , 74 -74 , 210] -210\bigr] y2+axy=x3x274x210{y}^2+a{x}{y}={x}^{3}-{x}^{2}-74{x}-210
3600.1-g6 3600.1-g Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.6837445672.683744567 2.846540973 41029158887299000000 \frac{4102915888729}{9000000} [a \bigl[a , 1 -1 , 0 0 , 1334 -1334 , 18942] 18942\bigr] y2+axy=x3x21334x+18942{y}^2+a{x}{y}={x}^{3}-{x}^{2}-1334{x}+18942
3600.1-g7 3600.1-g Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6709361410.670936141 2.846540973 265616619904933750 \frac{2656166199049}{33750} [a \bigl[a , 1 -1 , 0 0 , 1154 -1154 , 14898] -14898\bigr] y2+axy=x3x21154x14898{y}^2+a{x}{y}={x}^{3}-{x}^{2}-1154{x}-14898
3600.1-g8 3600.1-g Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.6837445672.683744567 2.846540973 1677898553420872981000 \frac{16778985534208729}{81000} [a \bigl[a , 1 -1 , 0 0 , 21334 -21334 , 1202942] 1202942\bigr] y2+axy=x3x221334x+1202942{y}^2+a{x}{y}={x}^{3}-{x}^{2}-21334{x}+1202942
3600.1-h1 3600.1-h Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.5671970212.56719702 2.221587558 16179215a+77209645 -\frac{161792}{15} a + \frac{772096}{45} [0 \bigl[0 , a a , 0 0 , 2a4 -2 a - 4 , 2a3] -2 a - 3\bigr] y2=x3+ax2+(2a4)x2a3{y}^2={x}^{3}+a{x}^{2}+\left(-2a-4\right){x}-2a-3
3600.1-h2 3600.1-h Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.5671970212.56719702 2.221587558 2233558475a+1060116825 \frac{22335584}{75} a + \frac{10601168}{25} [a \bigl[a , a+1 -a + 1 , a a , 9a12 -9 a - 12 , 16a23] -16 a - 23\bigr] y2+axy+ay=x3+(a+1)x2+(9a12)x16a23{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-9a-12\right){x}-16a-23
3600.1-i1 3600.1-i Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.7505498455.750549845 2.033126395 7782475a819225 \frac{77824}{75} a - \frac{8192}{25} [0 \bigl[0 , a1 -a - 1 , 0 0 , 4a3 4 a - 3 , 5a8] 5 a - 8\bigr] y2=x3+(a1)x2+(4a3)x+5a8{y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(4a-3\right){x}+5a-8
3600.1-i2 3600.1-i Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 11.5010996911.50109969 2.033126395 3215388815a+13653246445 -\frac{32153888}{15} a + \frac{136532464}{45} [a \bigl[a , a1 -a - 1 , a a , 10a16 -10 a - 16 , 20a+27] 20 a + 27\bigr] y2+axy+ay=x3+(a1)x2+(10a16)x+20a+27{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a-16\right){x}+20a+27
3600.1-j1 3600.1-j Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.5671970212.56719702 2.221587558 2233558475a+1060116825 -\frac{22335584}{75} a + \frac{10601168}{25} [a \bigl[a , a+1 a + 1 , a a , 9a12 9 a - 12 , 16a23] 16 a - 23\bigr] y2+axy+ay=x3+(a+1)x2+(9a12)x+16a23{y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(9a-12\right){x}+16a-23
3600.1-j2 3600.1-j Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 12.5671970212.56719702 2.221587558 16179215a+77209645 \frac{161792}{15} a + \frac{772096}{45} [0 \bigl[0 , a -a , 0 0 , 2a4 2 a - 4 , 2a3] 2 a - 3\bigr] y2=x3ax2+(2a4)x+2a3{y}^2={x}^{3}-a{x}^{2}+\left(2a-4\right){x}+2a-3
3600.1-k1 3600.1-k Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.7604645080.760464508 2.9110190612.911019061 3.130682295 279950421171875 -\frac{27995042}{1171875} [a \bigl[a , 1 -1 , 0 0 , 20 -20 , 300] 300\bigr] y2+axy=x3x220x+300{y}^2+a{x}{y}={x}^{3}-{x}^{2}-20{x}+300
3600.1-k2 3600.1-k Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3802322540.380232254 2.9110190612.911019061 3.130682295 5460767632805 \frac{54607676}{32805} [a \bigl[a , 1 -1 , 0 0 , 20 20 , 10] -10\bigr] y2+axy=x3x2+20x10{y}^2+a{x}{y}={x}^{3}-{x}^{2}+20{x}-10
3600.1-k3 3600.1-k Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.7604645080.760464508 11.6440762411.64407624 3.130682295 36316962025 \frac{3631696}{2025} [a \bigl[a , 1 -1 , 0 0 , 5 -5 , 0] 0\bigr] y2+axy=x3x25x{y}^2+a{x}{y}={x}^{3}-{x}^{2}-5{x}
3600.1-k4 3600.1-k Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 1.5209290171.520929017 11.6440762411.64407624 3.130682295 8683272045625 \frac{868327204}{5625} [a \bigl[a , 1 -1 , 0 0 , 50 -50 , 144] 144\bigr] y2+axy=x3x250x+144{y}^2+a{x}{y}={x}^{3}-{x}^{2}-50{x}+144
3600.1-k5 3600.1-k Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.5209290171.520929017 5.8220381235.822038123 3.130682295 2491801645 \frac{24918016}{45} [0 \bigl[0 , 1 -1 , 0 0 , 15 -15 , 18] -18\bigr] y2=x3x215x18{y}^2={x}^{3}-{x}^{2}-15{x}-18
3600.1-k6 3600.1-k Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.7604645080.760464508 11.6440762411.64407624 3.130682295 177002501760275 \frac{1770025017602}{75} [a \bigl[a , 1 -1 , 0 0 , 800 -800 , 8844] 8844\bigr] y2+axy=x3x2800x+8844{y}^2+a{x}{y}={x}^{3}-{x}^{2}-800{x}+8844
3600.1-l1 3600.1-l Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.4630330544.463033054 1.577920468 865504675a33635682025 \frac{865504}{675} a - \frac{3363568}{2025} [a \bigl[a , a1 -a - 1 , a a , 3a 3 a , 4a+1] 4 a + 1\bigr] y2+axy+ay=x3+(a1)x2+3ax+4a+1{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+3a{x}+4a+1
3600.1-l2 3600.1-l Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.9260661098.926066109 1.577920468 27682611245a+13064806415 -\frac{276826112}{45} a + \frac{130648064}{15} [0 \bigl[0 , a1 a - 1 , 0 0 , 13 -13 , 9a+2] 9 a + 2\bigr] y2=x3+(a1)x213x+9a+2{y}^2={x}^{3}+\left(a-1\right){x}^{2}-13{x}+9a+2
3600.1-m1 3600.1-m Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.8916211390.891621139 15.6425826615.64258266 2.465550068 2129615 \frac{21296}{15} [a \bigl[a , 1 -1 , 0 0 , 1 1 , 0] 0\bigr] y2+axy=x3x2+x{y}^2+a{x}{y}={x}^{3}-{x}^{2}+{x}
3600.1-m2 3600.1-m Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.4458105690.445810569 15.6425826615.64258266 2.465550068 470596225 \frac{470596}{225} [a \bigl[a , 1 -1 , 0 0 , 4 -4 , 2] 2\bigr] y2+axy=x3x24x+2{y}^2+a{x}{y}={x}^{3}-{x}^{2}-4{x}+2
3600.1-m3 3600.1-m Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2229052840.222905284 3.9106456653.910645665 2.465550068 1368358581875 \frac{136835858}{1875} [a \bigl[a , 1 -1 , 0 0 , 34 -34 , 70] -70\bigr] y2+axy=x3x234x70{y}^2+a{x}{y}={x}^{3}-{x}^{2}-34{x}-70
3600.1-m4 3600.1-m Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.2229052840.222905284 15.6425826615.64258266 2.465550068 546718898405 \frac{546718898}{405} [a \bigl[a , 1 -1 , 0 0 , 54 -54 , 162] 162\bigr] y2+axy=x3x254x+162{y}^2+a{x}{y}={x}^{3}-{x}^{2}-54{x}+162
3600.1-n1 3600.1-n Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.5777882151.577788215 2.231329492 28588484321347615a+40430222255136415 -\frac{285884843213476}{15} a + \frac{404302222551364}{15} [a \bigl[a , 1 -1 , a a , 46a+31 46 a + 31 , 436a685] -436 a - 685\bigr] y2+axy+ay=x3x2+(46a+31)x436a685{y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(46a+31\right){x}-436a-685
3600.1-n2 3600.1-n Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 12.6223057212.62230572 2.231329492 118784135a+1933312405 \frac{118784}{135} a + \frac{1933312}{405} [0 \bigl[0 , a -a , 0 0 , 6a10 6 a - 10 , 12a15] 12 a - 15\bigr] y2=x3ax2+(6a10)x+12a15{y}^2={x}^{3}-a{x}^{2}+\left(6a-10\right){x}+12a-15
3600.1-n3 3600.1-n Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 6.3111528616.311152861 2.231329492 583258208225a+27576545675 -\frac{583258208}{225} a + \frac{275765456}{75} [a \bigl[a , a+1 a + 1 , 0 0 , 25a35 25 a - 35 , 80a116] 80 a - 116\bigr] y2+axy=x3+(a+1)x2+(25a35)x+80a116{y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(25a-35\right){x}+80a-116
3600.1-n4 3600.1-n Q(2)\Q(\sqrt{2}) 243252 2^{4} \cdot 3^{2} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.5777882151.577788215 2.231329492 676473999561875a+956640540761875 \frac{67647399956}{1875} a + \frac{95664054076}{1875} [a \bigl[a , a+1 a + 1 , 0 0 , 10a50 10 a - 50 , 50a200] 50 a - 200\bigr] y2+axy=x3+(a+1)x2+(10a50)x+50a200{y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(10a-50\right){x}+50a-200
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.