Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2888.1-a1 |
2888.1-a |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2888.1 |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.85282$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$0.193627220$ |
$11.39537408$ |
3.120398043 |
\( \frac{2048}{19} a \) |
\( \bigl[0\) , \( -a - 1\) , \( a\) , \( a + 1\) , \( -1\bigr] \) |
${y}^2+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+1\right){x}-1$ |
2888.1-b1 |
2888.1-b |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2888.1 |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{10} \cdot 19^{2} \) |
$1.85282$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 2 \) |
$0.602396728$ |
$3.737734601$ |
3.184241976 |
\( -\frac{31250}{19} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -2\) , \( -2\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-2{x}-2$ |
2888.1-c1 |
2888.1-c |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2888.1 |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{8} \cdot 19^{2} \) |
$1.85282$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$0.040299673$ |
$25.57629875$ |
2.915306497 |
\( -\frac{96256}{19} a - \frac{141312}{19} \) |
\( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -1\) , \( -a + 2\bigr] \) |
${y}^2={x}^{3}+\left(-a+1\right){x}^{2}-{x}-a+2$ |
2888.1-d1 |
2888.1-d |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2888.1 |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.85282$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 2 \) |
$0.065414869$ |
$26.58148262$ |
2.459068793 |
\( -\frac{1024}{19} \) |
\( \bigl[0\) , \( -1\) , \( a\) , \( 0\) , \( 0\bigr] \) |
${y}^2+a{y}={x}^{3}-{x}^{2}$ |
2888.1-e1 |
2888.1-e |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2888.1 |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.85282$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$0.193627220$ |
$11.39537408$ |
3.120398043 |
\( -\frac{2048}{19} a \) |
\( \bigl[0\) , \( a - 1\) , \( a\) , \( -a + 1\) , \( -1\bigr] \) |
${y}^2+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+1\right){x}-1$ |
2888.1-f1 |
2888.1-f |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2888.1 |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{8} \cdot 19^{2} \) |
$1.85282$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$0.040299673$ |
$25.57629875$ |
2.915306497 |
\( \frac{96256}{19} a - \frac{141312}{19} \) |
\( \bigl[0\) , \( a + 1\) , \( 0\) , \( -1\) , \( a + 2\bigr] \) |
${y}^2={x}^{3}+\left(a+1\right){x}^{2}-{x}+a+2$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.