Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2450.1-a1 |
2450.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{2} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \) |
$0.918575960$ |
$30.09204433$ |
2.171747156 |
\( -\frac{2030903729}{245} a + \frac{4989304711}{490} \) |
\( \bigl[1\) , \( a - 1\) , \( a\) , \( 8 a - 24\) , \( -36 a + 64\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(8a-24\right){x}-36a+64$ |
2450.1-a2 |
2450.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{18} \cdot 5^{2} \cdot 7^{11} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$0.918575960$ |
$0.371506720$ |
2.171747156 |
\( -\frac{24601923540273098447}{51652616960} a + \frac{69584740054519134817}{103305233920} \) |
\( \bigl[1\) , \( a - 1\) , \( a\) , \( 1628 a - 2404\) , \( 42084 a - 61450\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1628a-2404\right){x}+42084a-61450$ |
2450.1-a3 |
2450.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{6} \cdot 7^{9} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{3} \) |
$0.306191986$ |
$3.343560482$ |
2.171747156 |
\( -\frac{41006699899}{58824500} a + \frac{24921050387}{23529800} \) |
\( \bigl[1\) , \( a - 1\) , \( a\) , \( 28 a - 29\) , \( 39 a + 15\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(28a-29\right){x}+39a+15$ |
2450.1-a4 |
2450.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 5^{12} \cdot 7^{9} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{3} \) |
$0.612383973$ |
$1.671780241$ |
2.171747156 |
\( \frac{6576803829297}{1470612500} a + \frac{28597719170581}{3676531250} \) |
\( \bigl[1\) , \( a - 1\) , \( a\) , \( -162 a + 31\) , \( 649 a + 39\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-162a+31\right){x}+649a+39$ |
2450.1-a5 |
2450.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 5^{4} \cdot 7^{19} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1.837151921$ |
$0.185753360$ |
2.171747156 |
\( \frac{136655602923200722901307}{1302730878328359200} a + \frac{73203665356140842512049}{651365439164179600} \) |
\( \bigl[1\) , \( a - 1\) , \( a\) , \( 588 a - 3844\) , \( 20724 a - 93386\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(588a-3844\right){x}+20724a-93386$ |
2450.1-a6 |
2450.1-a |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{4} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \) |
$1.837151921$ |
$15.04602216$ |
2.171747156 |
\( \frac{2058232013794683}{2450} a + \frac{1455389809337249}{1225} \) |
\( \bigl[1\) , \( a - 1\) , \( a\) , \( -57 a - 114\) , \( 309 a + 560\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-57a-114\right){x}+309a+560$ |
2450.1-b1 |
2450.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{14} \cdot 5^{2} \cdot 7^{5} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \) |
$0.025117988$ |
$10.39007648$ |
3.875322990 |
\( -\frac{118108859}{27440} a - \frac{751434421}{219520} \) |
\( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -13 a - 22\) , \( 37 a + 51\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-13a-22\right){x}+37a+51$ |
2450.1-b2 |
2450.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 5^{4} \cdot 7^{7} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \) |
$0.050235977$ |
$5.195038242$ |
3.875322990 |
\( \frac{1742367221942581}{47059600} a + \frac{308234584380907}{5882450} \) |
\( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -213 a - 342\) , \( 2277 a + 3075\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-213a-342\right){x}+2277a+3075$ |
2450.1-c1 |
2450.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{6} \cdot 7^{7} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$1.014788923$ |
3.229038581 |
\( -\frac{58709867527928}{14706125} a + \frac{32713545922369}{5882450} \) |
\( \bigl[a + 1\) , \( -a\) , \( a\) , \( -192 a - 299\) , \( -1843 a - 2677\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-192a-299\right){x}-1843a-2677$ |
2450.1-c2 |
2450.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{2} \cdot 7^{5} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$9.133100310$ |
3.229038581 |
\( -\frac{807046}{1715} a + \frac{23284619}{13720} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( 9 a - 12\) , \( -5 a + 7\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+\left(9a-12\right){x}-5a+7$ |
2450.1-c3 |
2450.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 5^{4} \cdot 7^{7} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$9.133100310$ |
3.229038581 |
\( -\frac{9041014057819}{11764900} a + \frac{3204687425396}{2941225} \) |
\( \bigl[a + 1\) , \( -a\) , \( a\) , \( -42 a - 69\) , \( -123 a - 167\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-42a-69\right){x}-123a-167$ |
2450.1-c4 |
2450.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 5^{12} \cdot 7^{5} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$1.014788923$ |
3.229038581 |
\( \frac{5522690760963823}{2143750} a + \frac{19525682691294224}{5359375} \) |
\( \bigl[1\) , \( 1\) , \( 1\) , \( 264 a - 642\) , \( 2875 a - 5873\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+\left(264a-642\right){x}+2875a-5873$ |
2450.1-d1 |
2450.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{8} \cdot 7^{6} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 5 \) |
$0.296010817$ |
$2.068666524$ |
2.164975947 |
\( -\frac{82414556350103511050309}{4201750} a + \frac{582758916636411218569721}{21008750} \) |
\( \bigl[1\) , \( a\) , \( 1\) , \( 2849 a - 2615\) , \( -68114 a + 114698\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(2849a-2615\right){x}-68114a+114698$ |
2450.1-d2 |
2450.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{4} \cdot 7^{12} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \cdot 5 \) |
$0.148005408$ |
$4.137333048$ |
2.164975947 |
\( -\frac{235228977620455557}{2824752490} a + \frac{3326721489164550107}{28247524900} \) |
\( \bigl[1\) , \( a\) , \( 1\) , \( -21 a - 445\) , \( -410 a + 2838\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-21a-445\right){x}-410a+2838$ |
2450.1-d3 |
2450.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 5^{2} \cdot 7^{21} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 5 \) |
$0.296010817$ |
$1.034333262$ |
2.164975947 |
\( \frac{4611625814109961773003}{797922662976120010} a + \frac{3874336198284300494257}{159584532595224002} \) |
\( \bigl[1\) , \( a\) , \( 1\) , \( -971 a - 1795\) , \( -25410 a - 32622\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-971a-1795\right){x}-25410a-32622$ |
2450.1-d4 |
2450.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{2} \cdot 7^{9} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 5 \) |
$0.074002704$ |
$8.274666096$ |
2.164975947 |
\( \frac{494031571783}{336140} a + \frac{555002513239}{268912} \) |
\( \bigl[1\) , \( a\) , \( 1\) , \( -141 a - 225\) , \( 1086 a + 1598\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-141a-225\right){x}+1086a+1598$ |
2450.1-e1 |
2450.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{16} \cdot 5^{2} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$14.19008860$ |
2.508476970 |
\( -\frac{8403728461}{7840} a + \frac{82408157621}{62720} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -59 a - 98\) , \( 332 a + 481\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-59a-98\right){x}+332a+481$ |
2450.1-e2 |
2450.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{4} \cdot 7^{18} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.443440269$ |
2.508476970 |
\( -\frac{1004857811493115906014013}{1661646528480050} a + \frac{1421083467997763635301567}{1661646528480050} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 271 a - 1768\) , \( 57592 a + 41081\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(271a-1768\right){x}+57592a+41081$ |
2450.1-e3 |
2450.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{16} \cdot 7^{12} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.443440269$ |
2.508476970 |
\( \frac{2781996407702629}{4503750781250} a + \frac{3936073756101929}{4503750781250} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -1589 a - 2228\) , \( -3568 a - 6887\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1589a-2228\right){x}-3568a-6887$ |
2450.1-e4 |
2450.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{8} \cdot 7^{12} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$1.773761076$ |
2.508476970 |
\( \frac{411142253527629}{7206001250} a + \frac{1769723127930227}{14412002500} \) |
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -979 a - 1518\) , \( 21492 a + 29681\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-979a-1518\right){x}+21492a+29681$ |
2450.1-e5 |
2450.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{8} \cdot 5^{4} \cdot 7^{6} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$7.095044304$ |
2.508476970 |
\( \frac{3489161010753951}{240100} a + \frac{19737677740652489}{960400} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 195 a - 362\) , \( -1085 a + 1767\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(195a-362\right){x}-1085a+1767$ |
2450.1-e6 |
2450.1-e |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$3.547522152$ |
2.508476970 |
\( \frac{292683886485963250086271}{490} a + \frac{827835043513033320755201}{980} \) |
\( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -1205 a + 338\) , \( -2765 a + 22207\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-1205a+338\right){x}-2765a+22207$ |
2450.1-f1 |
2450.1-f |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{6} \cdot 5^{4} \cdot 7^{4} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.704755737$ |
2.724042514 |
\( -\frac{87526017}{34300} a - \frac{246422171}{68600} \) |
\( \bigl[1\) , \( a - 1\) , \( 1\) , \( -3 a + 2\) , \( 18 a - 25\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-3a+2\right){x}+18a-25$ |
2450.1-f2 |
2450.1-f |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 5^{12} \cdot 7^{4} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.856083970$ |
2.724042514 |
\( \frac{1278766414209}{1071875} a - \frac{18066586745243}{10718750} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 158 a + 199\) , \( -11 a - 59\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(158a+199\right){x}-11a-59$ |
2450.1-f3 |
2450.1-f |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 5^{6} \cdot 7^{8} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.856083970$ |
2.724042514 |
\( -\frac{118339292834450010857}{29412250} a + \frac{16735703294069800441}{2941225} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -467 a - 1051\) , \( -1511 a - 5059\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-467a-1051\right){x}-1511a-5059$ |
2450.1-f4 |
2450.1-f |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 5^{2} \cdot 7^{8} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.704755737$ |
2.724042514 |
\( \frac{52168942487089}{2352980} a + \frac{36916361518489}{1176490} \) |
\( \bigl[1\) , \( a - 1\) , \( 1\) , \( 47 a - 98\) , \( 258 a - 305\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(47a-98\right){x}+258a-305$ |
2450.1-g1 |
2450.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{2} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.263006690$ |
$10.82693357$ |
2.013526130 |
\( \frac{1252246}{245} a + \frac{753817}{98} \) |
\( \bigl[1\) , \( a\) , \( 1\) , \( -a\) , \( -2\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}-a{x}-2$ |
2450.1-g2 |
2450.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 5^{4} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.526013380$ |
$5.413466785$ |
2.013526130 |
\( \frac{6949307873}{98} a + \frac{122853913718}{1225} \) |
\( \bigl[1\) , \( a\) , \( 1\) , \( -6 a - 20\) , \( -24 a - 42\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-6a-20\right){x}-24a-42$ |
2450.1-h1 |
2450.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{14} \cdot 5^{2} \cdot 7^{5} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \) |
$0.025117988$ |
$10.39007648$ |
3.875322990 |
\( \frac{118108859}{27440} a - \frac{751434421}{219520} \) |
\( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 12 a - 22\) , \( -38 a + 51\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(12a-22\right){x}-38a+51$ |
2450.1-h2 |
2450.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 5^{4} \cdot 7^{7} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \) |
$0.050235977$ |
$5.195038242$ |
3.875322990 |
\( -\frac{1742367221942581}{47059600} a + \frac{308234584380907}{5882450} \) |
\( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 212 a - 342\) , \( -2278 a + 3075\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(212a-342\right){x}-2278a+3075$ |
2450.1-i1 |
2450.1-i |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7^{10} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.348279587$ |
1.970166865 |
\( -\frac{6363475843723672171257}{57648010} a + \frac{899931384182552563944}{5764801} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 1425 a - 2268\) , \( 37120 a - 54319\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(1425a-2268\right){x}+37120a-54319$ |
2450.1-i2 |
2450.1-i |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{8} \cdot 5^{4} \cdot 7^{2} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$5.572473402$ |
1.970166865 |
\( \frac{1367631}{2800} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 2\) , \( -3\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+2{x}-3$ |
2450.1-i3 |
2450.1-i |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{8} \cdot 7^{4} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$5.572473402$ |
1.970166865 |
\( \frac{611960049}{122500} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -18\) , \( -19\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-18{x}-19$ |
2450.1-i4 |
2450.1-i |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 5^{16} \cdot 7^{2} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$5.572473402$ |
1.970166865 |
\( \frac{74565301329}{5468750} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -88\) , \( 317\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-88{x}+317$ |
2450.1-i5 |
2450.1-i |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 5^{4} \cdot 7^{8} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$4$ |
\( 2^{4} \) |
$1$ |
$1.393118350$ |
1.970166865 |
\( \frac{2121328796049}{120050} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -268\) , \( -1619\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-268{x}-1619$ |
2450.1-i6 |
2450.1-i |
$6$ |
$8$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7^{10} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$2$ |
2B |
$16$ |
\( 2^{2} \) |
$1$ |
$0.348279587$ |
1.970166865 |
\( \frac{6363475843723672171257}{57648010} a + \frac{899931384182552563944}{5764801} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -1425 a - 2268\) , \( -37120 a - 54319\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-1425a-2268\right){x}-37120a-54319$ |
2450.1-j1 |
2450.1-j |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 5^{12} \cdot 7^{4} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.856083970$ |
2.724042514 |
\( -\frac{1278766414209}{1071875} a - \frac{18066586745243}{10718750} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -156 a + 200\) , \( 210 a - 373\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-156a+200\right){x}+210a-373$ |
2450.1-j2 |
2450.1-j |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{6} \cdot 5^{4} \cdot 7^{4} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.704755737$ |
2.724042514 |
\( \frac{87526017}{34300} a - \frac{246422171}{68600} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 3 a + 2\) , \( -18 a - 25\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(3a+2\right){x}-18a-25$ |
2450.1-j3 |
2450.1-j |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 5^{2} \cdot 7^{8} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$7.704755737$ |
2.724042514 |
\( -\frac{52168942487089}{2352980} a + \frac{36916361518489}{1176490} \) |
\( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -47 a - 98\) , \( -258 a - 305\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-47a-98\right){x}-258a-305$ |
2450.1-j4 |
2450.1-j |
$4$ |
$6$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 5^{6} \cdot 7^{8} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1$ |
$0.856083970$ |
2.724042514 |
\( \frac{118339292834450010857}{29412250} a + \frac{16735703294069800441}{2941225} \) |
\( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 469 a - 1050\) , \( 460 a - 4123\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(469a-1050\right){x}+460a-4123$ |
2450.1-k1 |
2450.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{2} \cdot 7^{9} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 5 \) |
$0.074002704$ |
$8.274666096$ |
2.164975947 |
\( -\frac{494031571783}{336140} a + \frac{555002513239}{268912} \) |
\( \bigl[1\) , \( -a\) , \( 1\) , \( 141 a - 225\) , \( -1086 a + 1598\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(141a-225\right){x}-1086a+1598$ |
2450.1-k2 |
2450.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 5^{2} \cdot 7^{21} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 5 \) |
$0.296010817$ |
$1.034333262$ |
2.164975947 |
\( -\frac{4611625814109961773003}{797922662976120010} a + \frac{3874336198284300494257}{159584532595224002} \) |
\( \bigl[1\) , \( -a\) , \( 1\) , \( 971 a - 1795\) , \( 25410 a - 32622\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(971a-1795\right){x}+25410a-32622$ |
2450.1-k3 |
2450.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 5^{4} \cdot 7^{12} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \cdot 5 \) |
$0.148005408$ |
$4.137333048$ |
2.164975947 |
\( \frac{235228977620455557}{2824752490} a + \frac{3326721489164550107}{28247524900} \) |
\( \bigl[1\) , \( -a\) , \( 1\) , \( 21 a - 445\) , \( 410 a + 2838\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(21a-445\right){x}+410a+2838$ |
2450.1-k4 |
2450.1-k |
$4$ |
$4$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{8} \cdot 7^{6} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 5 \) |
$0.296010817$ |
$2.068666524$ |
2.164975947 |
\( \frac{82414556350103511050309}{4201750} a + \frac{582758916636411218569721}{21008750} \) |
\( \bigl[1\) , \( -a\) , \( 1\) , \( -2849 a - 2615\) , \( 68114 a + 114698\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-2849a-2615\right){x}+68114a+114698$ |
2450.1-l1 |
2450.1-l |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{2} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.263006690$ |
$10.82693357$ |
2.013526130 |
\( -\frac{1252246}{245} a + \frac{753817}{98} \) |
\( \bigl[1\) , \( -a\) , \( 1\) , \( a\) , \( -2\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+a{x}-2$ |
2450.1-l2 |
2450.1-l |
$2$ |
$2$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 5^{4} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.526013380$ |
$5.413466785$ |
2.013526130 |
\( -\frac{6949307873}{98} a + \frac{122853913718}{1225} \) |
\( \bigl[1\) , \( -a\) , \( 1\) , \( 6 a - 20\) , \( 24 a - 42\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(6a-20\right){x}+24a-42$ |
2450.1-m1 |
2450.1-m |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 5^{4} \cdot 7^{19} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.2 |
$1$ |
\( 2^{2} \cdot 3^{2} \) |
$1.837151921$ |
$0.185753360$ |
2.171747156 |
\( -\frac{136655602923200722901307}{1302730878328359200} a + \frac{73203665356140842512049}{651365439164179600} \) |
\( \bigl[1\) , \( -a - 1\) , \( a\) , \( -589 a - 3844\) , \( -20724 a - 93386\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-589a-3844\right){x}-20724a-93386$ |
2450.1-m2 |
2450.1-m |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{4} \cdot 7^{3} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3B.1.1 |
$1$ |
\( 2^{2} \) |
$1.837151921$ |
$15.04602216$ |
2.171747156 |
\( -\frac{2058232013794683}{2450} a + \frac{1455389809337249}{1225} \) |
\( \bigl[1\) , \( -a - 1\) , \( a\) , \( 56 a - 114\) , \( -309 a + 560\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(56a-114\right){x}-309a+560$ |
2450.1-m3 |
2450.1-m |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 5^{12} \cdot 7^{9} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{3} \) |
$0.612383973$ |
$1.671780241$ |
2.171747156 |
\( -\frac{6576803829297}{1470612500} a + \frac{28597719170581}{3676531250} \) |
\( \bigl[1\) , \( -a - 1\) , \( a\) , \( 161 a + 31\) , \( -649 a + 39\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(161a+31\right){x}-649a+39$ |
2450.1-m4 |
2450.1-m |
$6$ |
$18$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
2450.1 |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{6} \cdot 7^{9} \) |
$1.77818$ |
$(a), (-2a+1), (2a+1), (5)$ |
$1$ |
$\Z/6\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
✓ |
|
$2, 3$ |
2B, 3Cs.1.1 |
$1$ |
\( 2^{2} \cdot 3^{3} \) |
$0.306191986$ |
$3.343560482$ |
2.171747156 |
\( \frac{41006699899}{58824500} a + \frac{24921050387}{23529800} \) |
\( \bigl[1\) , \( -a - 1\) , \( a\) , \( -29 a - 29\) , \( -39 a + 15\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-29a-29\right){x}-39a+15$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.