Learn more

Refine search


Results (1-50 of 62 matches)

Next   Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
2450.1-a1 2450.1-a \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/6\Z$ $0.918575960$ $30.09204433$ 2.171747156 \( -\frac{2030903729}{245} a + \frac{4989304711}{490} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( 8 a - 24\) , \( -36 a + 64\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(8a-24\right){x}-36a+64$
2450.1-a2 2450.1-a \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.918575960$ $0.371506720$ 2.171747156 \( -\frac{24601923540273098447}{51652616960} a + \frac{69584740054519134817}{103305233920} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( 1628 a - 2404\) , \( 42084 a - 61450\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1628a-2404\right){x}+42084a-61450$
2450.1-a3 2450.1-a \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/6\Z$ $0.306191986$ $3.343560482$ 2.171747156 \( -\frac{41006699899}{58824500} a + \frac{24921050387}{23529800} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( 28 a - 29\) , \( 39 a + 15\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(28a-29\right){x}+39a+15$
2450.1-a4 2450.1-a \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/6\Z$ $0.612383973$ $1.671780241$ 2.171747156 \( \frac{6576803829297}{1470612500} a + \frac{28597719170581}{3676531250} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( -162 a + 31\) , \( 649 a + 39\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-162a+31\right){x}+649a+39$
2450.1-a5 2450.1-a \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.837151921$ $0.185753360$ 2.171747156 \( \frac{136655602923200722901307}{1302730878328359200} a + \frac{73203665356140842512049}{651365439164179600} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( 588 a - 3844\) , \( 20724 a - 93386\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(588a-3844\right){x}+20724a-93386$
2450.1-a6 2450.1-a \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/6\Z$ $1.837151921$ $15.04602216$ 2.171747156 \( \frac{2058232013794683}{2450} a + \frac{1455389809337249}{1225} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( -57 a - 114\) , \( 309 a + 560\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-57a-114\right){x}+309a+560$
2450.1-b1 2450.1-b \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.025117988$ $10.39007648$ 3.875322990 \( -\frac{118108859}{27440} a - \frac{751434421}{219520} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -13 a - 22\) , \( 37 a + 51\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-13a-22\right){x}+37a+51$
2450.1-b2 2450.1-b \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.050235977$ $5.195038242$ 3.875322990 \( \frac{1742367221942581}{47059600} a + \frac{308234584380907}{5882450} \) \( \bigl[1\) , \( -a + 1\) , \( a + 1\) , \( -213 a - 342\) , \( 2277 a + 3075\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-213a-342\right){x}+2277a+3075$
2450.1-c1 2450.1-c \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $1.014788923$ 3.229038581 \( -\frac{58709867527928}{14706125} a + \frac{32713545922369}{5882450} \) \( \bigl[a + 1\) , \( -a\) , \( a\) , \( -192 a - 299\) , \( -1843 a - 2677\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-192a-299\right){x}-1843a-2677$
2450.1-c2 2450.1-c \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $9.133100310$ 3.229038581 \( -\frac{807046}{1715} a + \frac{23284619}{13720} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 9 a - 12\) , \( -5 a + 7\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+\left(9a-12\right){x}-5a+7$
2450.1-c3 2450.1-c \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $9.133100310$ 3.229038581 \( -\frac{9041014057819}{11764900} a + \frac{3204687425396}{2941225} \) \( \bigl[a + 1\) , \( -a\) , \( a\) , \( -42 a - 69\) , \( -123 a - 167\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-42a-69\right){x}-123a-167$
2450.1-c4 2450.1-c \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $1.014788923$ 3.229038581 \( \frac{5522690760963823}{2143750} a + \frac{19525682691294224}{5359375} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 264 a - 642\) , \( 2875 a - 5873\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+\left(264a-642\right){x}+2875a-5873$
2450.1-d1 2450.1-d \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.296010817$ $2.068666524$ 2.164975947 \( -\frac{82414556350103511050309}{4201750} a + \frac{582758916636411218569721}{21008750} \) \( \bigl[1\) , \( a\) , \( 1\) , \( 2849 a - 2615\) , \( -68114 a + 114698\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(2849a-2615\right){x}-68114a+114698$
2450.1-d2 2450.1-d \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.148005408$ $4.137333048$ 2.164975947 \( -\frac{235228977620455557}{2824752490} a + \frac{3326721489164550107}{28247524900} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -21 a - 445\) , \( -410 a + 2838\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-21a-445\right){x}-410a+2838$
2450.1-d3 2450.1-d \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.296010817$ $1.034333262$ 2.164975947 \( \frac{4611625814109961773003}{797922662976120010} a + \frac{3874336198284300494257}{159584532595224002} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -971 a - 1795\) , \( -25410 a - 32622\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-971a-1795\right){x}-25410a-32622$
2450.1-d4 2450.1-d \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.074002704$ $8.274666096$ 2.164975947 \( \frac{494031571783}{336140} a + \frac{555002513239}{268912} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -141 a - 225\) , \( 1086 a + 1598\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-141a-225\right){x}+1086a+1598$
2450.1-e1 2450.1-e \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/8\Z$ $1$ $14.19008860$ 2.508476970 \( -\frac{8403728461}{7840} a + \frac{82408157621}{62720} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -59 a - 98\) , \( 332 a + 481\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-59a-98\right){x}+332a+481$
2450.1-e2 2450.1-e \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.443440269$ 2.508476970 \( -\frac{1004857811493115906014013}{1661646528480050} a + \frac{1421083467997763635301567}{1661646528480050} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 271 a - 1768\) , \( 57592 a + 41081\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(271a-1768\right){x}+57592a+41081$
2450.1-e3 2450.1-e \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.443440269$ 2.508476970 \( \frac{2781996407702629}{4503750781250} a + \frac{3936073756101929}{4503750781250} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -1589 a - 2228\) , \( -3568 a - 6887\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1589a-2228\right){x}-3568a-6887$
2450.1-e4 2450.1-e \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.773761076$ 2.508476970 \( \frac{411142253527629}{7206001250} a + \frac{1769723127930227}{14412002500} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -979 a - 1518\) , \( 21492 a + 29681\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-979a-1518\right){x}+21492a+29681$
2450.1-e5 2450.1-e \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $7.095044304$ 2.508476970 \( \frac{3489161010753951}{240100} a + \frac{19737677740652489}{960400} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 195 a - 362\) , \( -1085 a + 1767\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(195a-362\right){x}-1085a+1767$
2450.1-e6 2450.1-e \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/4\Z$ $1$ $3.547522152$ 2.508476970 \( \frac{292683886485963250086271}{490} a + \frac{827835043513033320755201}{980} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -1205 a + 338\) , \( -2765 a + 22207\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-1205a+338\right){x}-2765a+22207$
2450.1-f1 2450.1-f \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $7.704755737$ 2.724042514 \( -\frac{87526017}{34300} a - \frac{246422171}{68600} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( -3 a + 2\) , \( 18 a - 25\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-3a+2\right){x}+18a-25$
2450.1-f2 2450.1-f \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.856083970$ 2.724042514 \( \frac{1278766414209}{1071875} a - \frac{18066586745243}{10718750} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 158 a + 199\) , \( -11 a - 59\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(158a+199\right){x}-11a-59$
2450.1-f3 2450.1-f \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.856083970$ 2.724042514 \( -\frac{118339292834450010857}{29412250} a + \frac{16735703294069800441}{2941225} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -467 a - 1051\) , \( -1511 a - 5059\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-467a-1051\right){x}-1511a-5059$
2450.1-f4 2450.1-f \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $7.704755737$ 2.724042514 \( \frac{52168942487089}{2352980} a + \frac{36916361518489}{1176490} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 47 a - 98\) , \( 258 a - 305\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(47a-98\right){x}+258a-305$
2450.1-g1 2450.1-g \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.263006690$ $10.82693357$ 2.013526130 \( \frac{1252246}{245} a + \frac{753817}{98} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -a\) , \( -2\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}-a{x}-2$
2450.1-g2 2450.1-g \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.526013380$ $5.413466785$ 2.013526130 \( \frac{6949307873}{98} a + \frac{122853913718}{1225} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -6 a - 20\) , \( -24 a - 42\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-6a-20\right){x}-24a-42$
2450.1-h1 2450.1-h \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.025117988$ $10.39007648$ 3.875322990 \( \frac{118108859}{27440} a - \frac{751434421}{219520} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 12 a - 22\) , \( -38 a + 51\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(12a-22\right){x}-38a+51$
2450.1-h2 2450.1-h \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.050235977$ $5.195038242$ 3.875322990 \( -\frac{1742367221942581}{47059600} a + \frac{308234584380907}{5882450} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 212 a - 342\) , \( -2278 a + 3075\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(212a-342\right){x}-2278a+3075$
2450.1-i1 2450.1-i \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.348279587$ 1.970166865 \( -\frac{6363475843723672171257}{57648010} a + \frac{899931384182552563944}{5764801} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 1425 a - 2268\) , \( 37120 a - 54319\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(1425a-2268\right){x}+37120a-54319$
2450.1-i2 2450.1-i \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/4\Z$ $1$ $5.572473402$ 1.970166865 \( \frac{1367631}{2800} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 2\) , \( -3\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+2{x}-3$
2450.1-i3 2450.1-i \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $5.572473402$ 1.970166865 \( \frac{611960049}{122500} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -18\) , \( -19\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-18{x}-19$
2450.1-i4 2450.1-i \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/4\Z$ $1$ $5.572473402$ 1.970166865 \( \frac{74565301329}{5468750} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -88\) , \( 317\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-88{x}+317$
2450.1-i5 2450.1-i \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.393118350$ 1.970166865 \( \frac{2121328796049}{120050} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -268\) , \( -1619\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-268{x}-1619$
2450.1-i6 2450.1-i \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.348279587$ 1.970166865 \( \frac{6363475843723672171257}{57648010} a + \frac{899931384182552563944}{5764801} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -1425 a - 2268\) , \( -37120 a - 54319\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-1425a-2268\right){x}-37120a-54319$
2450.1-j1 2450.1-j \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.856083970$ 2.724042514 \( -\frac{1278766414209}{1071875} a - \frac{18066586745243}{10718750} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( -156 a + 200\) , \( 210 a - 373\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-156a+200\right){x}+210a-373$
2450.1-j2 2450.1-j \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $7.704755737$ 2.724042514 \( \frac{87526017}{34300} a - \frac{246422171}{68600} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( 3 a + 2\) , \( -18 a - 25\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(3a+2\right){x}-18a-25$
2450.1-j3 2450.1-j \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/6\Z$ $1$ $7.704755737$ 2.724042514 \( -\frac{52168942487089}{2352980} a + \frac{36916361518489}{1176490} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -47 a - 98\) , \( -258 a - 305\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-47a-98\right){x}-258a-305$
2450.1-j4 2450.1-j \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $0.856083970$ 2.724042514 \( \frac{118339292834450010857}{29412250} a + \frac{16735703294069800441}{2941225} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 469 a - 1050\) , \( 460 a - 4123\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(469a-1050\right){x}+460a-4123$
2450.1-k1 2450.1-k \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.074002704$ $8.274666096$ 2.164975947 \( -\frac{494031571783}{336140} a + \frac{555002513239}{268912} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( 141 a - 225\) , \( -1086 a + 1598\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(141a-225\right){x}-1086a+1598$
2450.1-k2 2450.1-k \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.296010817$ $1.034333262$ 2.164975947 \( -\frac{4611625814109961773003}{797922662976120010} a + \frac{3874336198284300494257}{159584532595224002} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( 971 a - 1795\) , \( 25410 a - 32622\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(971a-1795\right){x}+25410a-32622$
2450.1-k3 2450.1-k \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.148005408$ $4.137333048$ 2.164975947 \( \frac{235228977620455557}{2824752490} a + \frac{3326721489164550107}{28247524900} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( 21 a - 445\) , \( 410 a + 2838\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(21a-445\right){x}+410a+2838$
2450.1-k4 2450.1-k \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.296010817$ $2.068666524$ 2.164975947 \( \frac{82414556350103511050309}{4201750} a + \frac{582758916636411218569721}{21008750} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( -2849 a - 2615\) , \( 68114 a + 114698\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-2849a-2615\right){x}+68114a+114698$
2450.1-l1 2450.1-l \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.263006690$ $10.82693357$ 2.013526130 \( -\frac{1252246}{245} a + \frac{753817}{98} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( a\) , \( -2\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+a{x}-2$
2450.1-l2 2450.1-l \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.526013380$ $5.413466785$ 2.013526130 \( -\frac{6949307873}{98} a + \frac{122853913718}{1225} \) \( \bigl[1\) , \( -a\) , \( 1\) , \( 6 a - 20\) , \( 24 a - 42\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-a{x}^{2}+\left(6a-20\right){x}+24a-42$
2450.1-m1 2450.1-m \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.837151921$ $0.185753360$ 2.171747156 \( -\frac{136655602923200722901307}{1302730878328359200} a + \frac{73203665356140842512049}{651365439164179600} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -589 a - 3844\) , \( -20724 a - 93386\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-589a-3844\right){x}-20724a-93386$
2450.1-m2 2450.1-m \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/6\Z$ $1.837151921$ $15.04602216$ 2.171747156 \( -\frac{2058232013794683}{2450} a + \frac{1455389809337249}{1225} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( 56 a - 114\) , \( -309 a + 560\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(56a-114\right){x}-309a+560$
2450.1-m3 2450.1-m \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/6\Z$ $0.612383973$ $1.671780241$ 2.171747156 \( -\frac{6576803829297}{1470612500} a + \frac{28597719170581}{3676531250} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( 161 a + 31\) , \( -649 a + 39\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(161a+31\right){x}-649a+39$
2450.1-m4 2450.1-m \(\Q(\sqrt{2}) \) \( 2 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/6\Z$ $0.306191986$ $3.343560482$ 2.171747156 \( \frac{41006699899}{58824500} a + \frac{24921050387}{23529800} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -29 a - 29\) , \( -39 a + 15\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-29a-29\right){x}-39a+15$
Next   Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.