Properties

Base field \(\Q(\sqrt{2}) \)
Label 2.2.8.1-1800.1-c
Conductor 1800.1
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{2}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 2 \); class number \(1\).

Elliptic curves in class 1800.1-c over \(\Q(\sqrt{2}) \)

Isogeny class 1800.1-c contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
1800.1-c1 \( \bigl[a\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \)
1800.1-c2 \( \bigl[a\) , \( 0\) , \( 0\) , \( -4\) , \( -2\bigr] \)
1800.1-c3 \( \bigl[a\) , \( 0\) , \( 0\) , \( -34\) , \( 70\bigr] \)
1800.1-c4 \( \bigl[a\) , \( 0\) , \( 0\) , \( -54\) , \( -162\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph