Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1800.1-a1 1800.1-a \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.151320779$ $22.50857439$ 2.408416311 \( -\frac{22335584}{75} a + \frac{10601168}{25} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 7 a - 11\) , \( -8 a + 11\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(7a-11\right){x}-8a+11$
1800.1-a2 1800.1-a \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.075660389$ $22.50857439$ 2.408416311 \( \frac{161792}{15} a + \frac{772096}{45} \) \( \bigl[0\) , \( a\) , \( 0\) , \( 2 a - 4\) , \( -2 a + 3\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(2a-4\right){x}-2a+3$
1800.1-b1 1800.1-b \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.223522115$ $8.143100067$ 2.574099130 \( -\frac{865504}{675} a - \frac{3363568}{2025} \) \( \bigl[a\) , \( -a\) , \( a\) , \( -3 a\) , \( 4 a - 2\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-a{x}^{2}-3a{x}+4a-2$
1800.1-b2 1800.1-b \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.111761057$ $16.28620013$ 2.574099130 \( \frac{276826112}{45} a + \frac{130648064}{15} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -13\) , \( 9 a - 2\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}-13{x}+9a-2$
1800.1-c1 1800.1-c \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.39841016$ 2.191749975 \( \frac{21296}{15} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}$
1800.1-c2 1800.1-c \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $12.39841016$ 2.191749975 \( \frac{470596}{225} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -4\) , \( -2\bigr] \) ${y}^2+a{x}{y}={x}^{3}-4{x}-2$
1800.1-c3 1800.1-c \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $12.39841016$ 2.191749975 \( \frac{136835858}{1875} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -34\) , \( 70\bigr] \) ${y}^2+a{x}{y}={x}^{3}-34{x}+70$
1800.1-c4 1800.1-c \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.099602540$ 2.191749975 \( \frac{546718898}{405} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -54\) , \( -162\bigr] \) ${y}^2+a{x}{y}={x}^{3}-54{x}-162$
1800.1-d1 1800.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.146228852$ $0.805807860$ 2.612449050 \( -\frac{27995042}{1171875} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -20\) , \( -300\bigr] \) ${y}^2+a{x}{y}={x}^{3}-20{x}-300$
1800.1-d2 1800.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.573114426$ $3.223231443$ 2.612449050 \( \frac{54607676}{32805} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 20\) , \( 10\bigr] \) ${y}^2+a{x}{y}={x}^{3}+20{x}+10$
1800.1-d3 1800.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.146228852$ $12.89292577$ 2.612449050 \( \frac{3631696}{2025} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -5\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}-5{x}$
1800.1-d4 1800.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.573114426$ $3.223231443$ 2.612449050 \( \frac{868327204}{5625} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -50\) , \( -144\bigr] \) ${y}^2+a{x}{y}={x}^{3}-50{x}-144$
1800.1-d5 1800.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.573114426$ $25.78585154$ 2.612449050 \( \frac{24918016}{45} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -15\) , \( 18\bigr] \) ${y}^2={x}^{3}+{x}^{2}-15{x}+18$
1800.1-d6 1800.1-d \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.146228852$ $0.805807860$ 2.612449050 \( \frac{1770025017602}{75} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -800\) , \( -8844\bigr] \) ${y}^2+a{x}{y}={x}^{3}-800{x}-8844$
1800.1-e1 1800.1-e \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.223522115$ $8.143100067$ 2.574099130 \( \frac{865504}{675} a - \frac{3363568}{2025} \) \( \bigl[a\) , \( a\) , \( a\) , \( 3 a\) , \( -4 a - 2\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+3a{x}-4a-2$
1800.1-e2 1800.1-e \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.111761057$ $16.28620013$ 2.574099130 \( -\frac{276826112}{45} a + \frac{130648064}{15} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -13\) , \( -9 a - 2\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}-13{x}-9a-2$
1800.1-f1 1800.1-f \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.075660389$ $22.50857439$ 2.408416311 \( -\frac{161792}{15} a + \frac{772096}{45} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -2 a - 4\) , \( 2 a + 3\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-2a-4\right){x}+2a+3$
1800.1-f2 1800.1-f \(\Q(\sqrt{2}) \) \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.151320779$ $22.50857439$ 2.408416311 \( \frac{22335584}{75} a + \frac{10601168}{25} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -7 a - 11\) , \( 8 a + 11\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-7a-11\right){x}+8a+11$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.