Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1444.1-a1 |
1444.1-a |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
1444.1 |
\( 2^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.55803$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 3 \) |
$0.090182329$ |
$12.37307863$ |
2.367039347 |
\( \frac{178204879872}{19} a - \frac{252019758080}{19} \) |
\( \bigl[0\) , \( 1\) , \( a\) , \( a - 6\) , \( -32 a - 40\bigr] \) |
${y}^2+a{y}={x}^{3}+{x}^{2}+\left(a-6\right){x}-32a-40$ |
1444.1-b1 |
1444.1-b |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
1444.1 |
\( 2^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.55803$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 3 \) |
$0.090182329$ |
$12.37307863$ |
2.367039347 |
\( -\frac{178204879872}{19} a - \frac{252019758080}{19} \) |
\( \bigl[0\) , \( 1\) , \( a\) , \( -a - 6\) , \( 32 a - 40\bigr] \) |
${y}^2+a{y}={x}^{3}+{x}^{2}+\left(-a-6\right){x}+32a-40$ |
1444.1-c1 |
1444.1-c |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
1444.1 |
\( 2^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.55803$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 3 \) |
$0.056475061$ |
$19.78350515$ |
2.370097498 |
\( -\frac{3740000}{19} a - \frac{5277168}{19} \) |
\( \bigl[a\) , \( -a + 1\) , \( a\) , \( -3 a + 2\) , \( 0\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+2\right){x}$ |
1444.1-d1 |
1444.1-d |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
1444.1 |
\( 2^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.55803$ |
$(a), (19)$ |
$0$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 1 \) |
$1$ |
$2.466064026$ |
0.871885298 |
\( -\frac{4194304}{19} \) |
\( \bigl[0\) , \( 1\) , \( a\) , \( -5\) , \( -7\bigr] \) |
${y}^2+a{y}={x}^{3}+{x}^{2}-5{x}-7$ |
1444.1-e1 |
1444.1-e |
$1$ |
$1$ |
\(\Q(\sqrt{2}) \) |
$2$ |
$[2, 0]$ |
1444.1 |
\( 2^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.55803$ |
$(a), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 3 \) |
$0.056475061$ |
$19.78350515$ |
2.370097498 |
\( \frac{3740000}{19} a - \frac{5277168}{19} \) |
\( \bigl[a\) , \( a + 1\) , \( a\) , \( 3 a + 2\) , \( 0\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(3a+2\right){x}$ |
Download to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.