Properties

Label 2.2.77.1-77.1-d1
Base field \(\Q(\sqrt{77}) \)
Conductor norm \( 77 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{77}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-19, -1, 1]))
 
gp: K = nfinit(Polrev([-19, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(36a+137\right){x}-619a-2411\)
sage: E = EllipticCurve([K([1,1]),K([-1,1]),K([0,1]),K([137,36]),K([-2411,-619])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,1]),Polrev([0,1]),Polrev([137,36]),Polrev([-2411,-619])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,1],K![0,1],K![137,36],K![-2411,-619]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a+1)\) = \((a+3)\cdot(a-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 77 \) = \(7\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-41503)\) = \((a+3)^{6}\cdot(a-6)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1722499009 \) = \(7^{6}\cdot11^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{4657463}{41503} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(\frac{27}{16} a + \frac{31}{4} : \frac{57}{16} a + \frac{1113}{64} : 1\right)$ $\left(11 a + 44 : -152 a - 587 : 1\right)$
Heights \(1.4803018111773844322220459505544877205\) \(0.29598217557507840705821871917140265422\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a + 5 : -4 a - 12 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.43814295058001116259750755253776824996 \)
Period: \( 3.2101873408696119145423660433455397356 \)
Tamagawa product: \( 24 \)  =  \(( 2 \cdot 3 )\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 3.8469105277667522036274761400779848577 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+3)\) \(7\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((a-6)\) \(11\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 77.1-d consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 539.d2
\(\Q\) 847.a2