Properties

Label 2.2.76.1-72.1-j1
Base field \(\Q(\sqrt{19}) \)
Conductor norm \( 72 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 8 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{19}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-19, 0, 1]))
 
gp: K = nfinit(Polrev([-19, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-51932a+226389\right){x}-98430345a+429047963\)
sage: E = EllipticCurve([K([1,1]),K([-1,1]),K([1,1]),K([226389,-51932]),K([429047963,-98430345])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,1]),Polrev([1,1]),Polrev([226389,-51932]),Polrev([429047963,-98430345])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,1],K![1,1],K![226389,-51932],K![429047963,-98430345]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-18a+78)\) = \((-3a+13)^{3}\cdot(-a-4)\cdot(-a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 72 \) = \(2^{3}\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-209952)\) = \((-3a+13)^{10}\cdot(-a-4)^{8}\cdot(-a+4)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 44079842304 \) = \(2^{10}\cdot3^{8}\cdot3^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{207646}{6561} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{2164}{9} a + \frac{9401}{9} : \frac{313342}{27} a - \frac{1365644}{27} : 1\right)$
Height \(1.5625950838619209050490144165169996437\)
Torsion structure: \(\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(32 a - 143 : 3106 a - 13532 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.5625950838619209050490144165169996437 \)
Period: \( 5.6835085175015869010371476279434336896 \)
Tamagawa product: \( 128 \)  =  \(2\cdot2^{3}\cdot2^{3}\)
Torsion order: \(8\)
Leading coefficient: \( 4.0748925742799633517250737423966899635 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+13)\) \(2\) \(2\) \(III^{*}\) Additive \(-1\) \(3\) \(10\) \(0\)
\((-a-4)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((-a+4)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 72.1-j consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 48.a6
\(\Q\) 8664.j6