Properties

Label 2.2.76.1-72.1-f1
Base field \(\Q(\sqrt{19}) \)
Conductor norm \( 72 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{19}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-19, 0, 1]))
 
gp: K = nfinit(Polrev([-19, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(3092a+13478\right){x}-69546a-303144\)
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([0,0]),K([13478,3092]),K([-303144,-69546])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([0,0]),Polrev([13478,3092]),Polrev([-303144,-69546])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![0,0],K![13478,3092],K![-303144,-69546]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-18a+78)\) = \((-3a+13)^{3}\cdot(-a-4)\cdot(-a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 72 \) = \(2^{3}\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-96a+96)\) = \((-3a+13)^{11}\cdot(-a-4)\cdot(-a+4)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -165888 \) = \(-2^{11}\cdot3\cdot3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{388117029814481}{27} a + \frac{1691762911268209}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{118219}{25} a + \frac{515372}{25} : -\frac{121628193}{125} a - \frac{530164059}{125} : 1\right)$
Height \(7.3996978951249935205771938848778920239\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{2} a + 11 : -\frac{27}{4} a - \frac{117}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 7.3996978951249935205771938848778920239 \)
Period: \( 1.5365819773913211821643835604444338629 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.6085125099398768073565106691124264019 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+13)\) \(2\) \(1\) \(II^{*}\) Additive \(-1\) \(3\) \(11\) \(0\)
\((-a-4)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a+4)\) \(3\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 72.1-f consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.