Properties

Label 2.2.76.1-72.1-b1
Base field \(\Q(\sqrt{19}) \)
Conductor norm \( 72 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{19}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-19, 0, 1]))
 
gp: K = nfinit(Polrev([-19, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(14688a-64033\right){x}-1602613a+6985623\)
sage: E = EllipticCurve([K([1,1]),K([1,-1]),K([1,1]),K([-64033,14688]),K([6985623,-1602613])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,-1]),Polrev([1,1]),Polrev([-64033,14688]),Polrev([6985623,-1602613])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,-1],K![1,1],K![-64033,14688],K![6985623,-1602613]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-18a+78)\) = \((-3a+13)^{3}\cdot(-a-4)\cdot(-a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 72 \) = \(2^{3}\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-396576a+1702944)\) = \((-3a+13)^{11}\cdot(-a-4)^{10}\cdot(-a+4)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -88159684608 \) = \(-2^{11}\cdot3^{10}\cdot3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{33870803}{59049} a + \frac{151529261}{59049} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{63}{2} a + 136 : -\frac{211}{4} a + \frac{923}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.6478508085609867794759394593504214471 \)
Tamagawa product: \( 12 \)  =  \(1\cdot2\cdot( 2 \cdot 3 )\)
Torsion order: \(2\)
Leading coefficient: \( 2.2876823578620392949079585426574505060 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+13)\) \(2\) \(1\) \(II^{*}\) Additive \(-1\) \(3\) \(11\) \(0\)
\((-a-4)\) \(3\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)
\((-a+4)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 72.1-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.