Properties

Label 2.2.76.1-24.2-c1
Base field \(\Q(\sqrt{19}) \)
Conductor norm \( 24 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{19}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-19, 0, 1]))
 
gp: K = nfinit(Polrev([-19, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(52701a-229718\right){x}-17439999a+76019186\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([1,1]),K([-229718,52701]),K([76019186,-17439999])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([1,1]),Polrev([-229718,52701]),Polrev([76019186,-17439999])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![1,1],K![-229718,52701],K![76019186,-17439999]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a+10)\) = \((-3a+13)^{3}\cdot(-a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 24 \) = \(2^{3}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3328a-16940)\) = \((-3a+13)^{4}\cdot(-a+4)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 76527504 \) = \(2^{4}\cdot3^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2379806720}{4782969} a - \frac{24019195904}{4782969} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{275}{9} a + \frac{1202}{9} : \frac{21532}{27} a - \frac{93928}{27} : 1\right)$
Height \(0.62768755281757204557634996536436870915\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.62768755281757204557634996536436870915 \)
Period: \( 5.4239831668978780497966596279989756632 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 3.1242446908285979973836057355524308332 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+13)\) \(2\) \(2\) \(III\) Additive \(-1\) \(3\) \(4\) \(0\)
\((-a+4)\) \(3\) \(2\) \(I_{14}\) Non-split multiplicative \(1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 24.2-c consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.