Properties

Label 2.2.76.1-20.1-a2
Base field \(\Q(\sqrt{19}) \)
Conductor norm \( 20 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{19}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-19, 0, 1]))
 
gp: K = nfinit(Polrev([-19, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-85a-374\right){x}-2930a-12775\)
sage: E = EllipticCurve([K([1,1]),K([-1,1]),K([1,1]),K([-374,-85]),K([-12775,-2930])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,1]),Polrev([1,1]),Polrev([-374,-85]),Polrev([-12775,-2930])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,1],K![1,1],K![-374,-85],K![-12775,-2930]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((4a+18)\) = \((-3a+13)^{2}\cdot(2a+9)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 20 \) = \(2^{2}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((48a-224)\) = \((-3a+13)^{8}\cdot(2a+9)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6400 \) = \(2^{8}\cdot5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{612}{25} a - \frac{3656}{25} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{366}{25} a + \frac{1617}{25} : \frac{16132}{125} a + \frac{70709}{125} : 1\right)$
Height \(1.6050836567489730763795735635948150413\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(6 a + 27 : -56 a - 241 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.6050836567489730763795735635948150413 \)
Period: \( 12.819093340488843772449058343512169875 \)
Tamagawa product: \( 6 \)  =  \(3\cdot2\)
Torsion order: \(3\)
Leading coefficient: \( 3.1469288432191196700363226360818564369 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+13)\) \(2\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((2a+9)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 20.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.