Properties

Label 2.2.76.1-18.1-c2
Base field \(\Q(\sqrt{19}) \)
Conductor norm \( 18 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{19}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-19, 0, 1]))
 
gp: K = nfinit(Polrev([-19, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-46790a-203942\right){x}-11366766a-49546594\)
sage: E = EllipticCurve([K([1,0]),K([-1,1]),K([0,1]),K([-203942,-46790]),K([-49546594,-11366766])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,1]),Polrev([0,1]),Polrev([-203942,-46790]),Polrev([-49546594,-11366766])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,1],K![0,1],K![-203942,-46790],K![-49546594,-11366766]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-9a+39)\) = \((-3a+13)\cdot(-a-4)\cdot(-a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 18 \) = \(2\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1616904a+3677256)\) = \((-3a+13)^{7}\cdot(-a-4)^{2}\cdot(-a+4)^{22}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -36150980669568 \) = \(-2^{7}\cdot3^{2}\cdot3^{22}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3015980695953593}{502096953744} a + \frac{13147717480342991}{502096953744} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-40 a - 172 : -99 a - 430 : 1\right)$
Height \(0.26911117031633950880939062311256645135\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-47 a - \frac{813}{4} : 23 a + \frac{813}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.26911117031633950880939062311256645135 \)
Period: \( 2.5720441641687492699437253022892737262 \)
Tamagawa product: \( 44 \)  =  \(1\cdot2\cdot( 2 \cdot 11 )\)
Torsion order: \(2\)
Leading coefficient: \( 1.7467310128065948900132131700742232088 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+13)\) \(2\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)
\((-a-4)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a+4)\) \(3\) \(22\) \(I_{22}\) Split multiplicative \(-1\) \(1\) \(22\) \(22\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 18.1-c consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.