Learn more

Refine search


Results (22 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
171.1-a1 171.1-a \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.660744489$ $3.604998134$ 2.747015182 \( -\frac{12364905437067631}{124659} a - \frac{2836704000281954}{6561} \) \( \bigl[1\) , \( 1\) , \( a\) , \( -659572 a - 2875005\) , \( 608482693 a + 2652314563\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-659572a-2875005\right){x}+608482693a+2652314563$
171.1-b1 171.1-b \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.085998375$ 1.972938037 \( -\frac{9358714467168256}{22284891} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( -4390\) , \( -113432\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}-4390{x}-113432$
171.1-b2 171.1-b \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\Z/5\Z$ $\mathrm{SU}(2)$ $1$ $2.149959381$ 1.972938037 \( \frac{841232384}{1121931} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( 20\) , \( -32\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}+20{x}-32$
171.1-c1 171.1-c \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.660744489$ $3.604998134$ 2.747015182 \( \frac{12364905437067631}{124659} a - \frac{2836704000281954}{6561} \) \( \bigl[1\) , \( 1\) , \( a\) , \( 659571 a - 2875005\) , \( -608482693 a + 2652314563\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(659571a-2875005\right){x}-608482693a+2652314563$
171.1-d1 171.1-d \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.316496682$ 6.040501053 \( -\frac{12364905437067631}{124659} a - \frac{2836704000281954}{6561} \) \( \bigl[a\) , \( 0\) , \( 1\) , \( -659572 a - 2874998\) , \( -609801836 a - 2658064575\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-659572a-2874998\right){x}-609801836a-2658064575$
171.1-e1 171.1-e \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.014286018$ $30.86363048$ 1.618457864 \( -\frac{1404928}{171} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -2\) , \( 2\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}-2{x}+2$
171.1-f1 171.1-f \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.203787826$ $0.565538563$ 0.675157357 \( -\frac{80836867580206264835}{124659} a + \frac{18545249299658286056}{6561} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 175 a - 860\) , \( 3178 a - 14456\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(175a-860\right){x}+3178a-14456$
171.1-f2 171.1-f \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $2.601893913$ $2.262154252$ 0.675157357 \( \frac{67419143}{390963} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 10\) , \( -10\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+10{x}-10$
171.1-f3 171.1-f \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.650473478$ $36.19446804$ 0.675157357 \( \frac{389017}{57} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 0\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}$
171.1-f4 171.1-f \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1.300946956$ $9.048617011$ 0.675157357 \( \frac{30664297}{3249} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -5\) , \( -16\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-5{x}-16$
171.1-f5 171.1-f \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.601893913$ $2.262154252$ 0.675157357 \( \frac{115714886617}{1539} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -100\) , \( -586\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-100{x}-586$
171.1-f6 171.1-f \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $5.203787826$ $0.565538563$ 0.675157357 \( \frac{80836867580206264835}{124659} a + \frac{18545249299658286056}{6561} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -175 a - 860\) , \( -3178 a - 14456\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-175a-860\right){x}-3178a-14456$
171.1-g1 171.1-g \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.316496682$ 6.040501053 \( \frac{12364905437067631}{124659} a - \frac{2836704000281954}{6561} \) \( \bigl[a\) , \( 0\) , \( 1\) , \( 659571 a - 2874998\) , \( 609801836 a - 2658064575\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(659571a-2874998\right){x}+609801836a-2658064575$
171.1-h1 171.1-h \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.226284916$ $3.435258684$ 7.133427351 \( -\frac{9358714467168256}{22284891} \) \( \bigl[0\) , \( -1\) , \( a\) , \( -4390\) , \( 113427\bigr] \) ${y}^2+a{y}={x}^{3}-{x}^{2}-4390{x}+113427$
171.1-h2 171.1-h \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.131424581$ $3.435258684$ 7.133427351 \( \frac{841232384}{1121931} \) \( \bigl[0\) , \( -1\) , \( a\) , \( 20\) , \( 27\bigr] \) ${y}^2+a{y}={x}^{3}-{x}^{2}+20{x}+27$
171.1-i1 171.1-i \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $9.423048177$ 1.080897756 \( -\frac{80836867580206264835}{124659} a + \frac{18545249299658286056}{6561} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 175 a - 862\) , \( -2828 a + 12735\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(175a-862\right){x}-2828a+12735$
171.1-i2 171.1-i \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.711524088$ 1.080897756 \( \frac{67419143}{390963} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 8\) , \( 29\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+8{x}+29$
171.1-i3 171.1-i \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.84609635$ 1.080897756 \( \frac{389017}{57} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2\) , \( -1\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-2{x}-1$
171.1-i4 171.1-i \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.84609635$ 1.080897756 \( \frac{30664297}{3249} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -7\) , \( 5\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-7{x}+5$
171.1-i5 171.1-i \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $18.84609635$ 1.080897756 \( \frac{115714886617}{1539} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -102\) , \( 385\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-102{x}+385$
171.1-i6 171.1-i \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $9.423048177$ 1.080897756 \( \frac{80836867580206264835}{124659} a + \frac{18545249299658286056}{6561} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -175 a - 862\) , \( 2828 a + 12735\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-175a-862\right){x}+2828a+12735$
171.1-j1 171.1-j \(\Q(\sqrt{19}) \) \( 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.194156810$ $3.679988085$ 8.065308033 \( -\frac{1404928}{171} \) \( \bigl[0\) , \( 1\) , \( a\) , \( -2\) , \( -7\bigr] \) ${y}^2+a{y}={x}^{3}+{x}^{2}-2{x}-7$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.