Base field \(\Q(\sqrt{65}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).
Elliptic curves in class 52.1-i over \(\Q(\sqrt{65}) \)
Isogeny class 52.1-i contains 2 curves linked by isogenies of degree 7.
Curve label | Weierstrass Coefficients |
---|---|
52.1-i1 | \( \bigl[1\) , \( -1\) , \( 1\) , \( -213\) , \( -1257\bigr] \) |
52.1-i2 | \( \bigl[1\) , \( -1\) , \( 1\) , \( -3\) , \( 3\bigr] \) |
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)