Properties

Label 2.2.65.1-196.1-h2
Base field \(\Q(\sqrt{65}) \)
Conductor norm \( 196 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{65}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-16, -1, 1]))
 
gp: K = nfinit(Polrev([-16, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-16, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3225a+11395\right){x}+441a+1561\)
sage: E = EllipticCurve([K([1,0]),K([1,-1]),K([1,0]),K([11395,3225]),K([1561,441])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,-1]),Polrev([1,0]),Polrev([11395,3225]),Polrev([1561,441])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,-1],K![1,0],K![11395,3225],K![1561,441]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((14)\) = \((2,a)\cdot(2,a+1)\cdot(7,a+1)\cdot(7,a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 196 \) = \(2\cdot2\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1759702a+3891510)\) = \((2,a)\cdot(2,a+1)^{33}\cdot(7,a+1)\cdot(7,a+5)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 41248865910784 \) = \(2\cdot2^{33}\cdot7\cdot7^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{632471691020195}{2946347565056} a + \frac{138967326073715}{184146722816} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(96 a + \frac{1351}{4} : -\frac{11057}{4} a - \frac{78085}{8} : 1\right)$
Height \(4.4173340468473651584490252266055498649\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 4.4173340468473651584490252266055498649 \)
Period: \( 1.5155054187474786945662899391036258596 \)
Tamagawa product: \( 3 \)  =  \(1\cdot1\cdot1\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 4.9820984841332141754584755977167781462 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((2,a+1)\) \(2\) \(1\) \(I_{33}\) Non-split multiplicative \(1\) \(1\) \(33\) \(33\)
\((7,a+1)\) \(7\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((7,a+5)\) \(7\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 196.1-h consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.