Properties

Label 2.2.65.1-196.1-g3
Base field \(\Q(\sqrt{65}) \)
Conductor norm \( 196 \)
CM no
Base change no
Q-curve yes
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{65}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-16, -1, 1]))
 
gp: K = nfinit(Polrev([-16, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-16, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4331a-15290\right){x}+36406a+128553\)
sage: E = EllipticCurve([K([1,0]),K([-1,-1]),K([1,1]),K([-15290,-4331]),K([128553,36406])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-15290,-4331]),Polrev([128553,36406])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,-1],K![1,1],K![-15290,-4331],K![128553,36406]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((14)\) = \((2,a)\cdot(2,a+1)\cdot(7,a+1)\cdot(7,a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 196 \) = \(2\cdot2\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((157351936)\) = \((2,a)^{16}\cdot(2,a+1)^{16}\cdot(7,a+1)^{4}\cdot(7,a+5)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 24759631762948096 \) = \(2^{16}\cdot2^{16}\cdot7^{4}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{274244925473}{157351936} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{5}{4} a + \frac{11}{4} : -\frac{9}{8} a - \frac{15}{8} : 1\right)$ $\left(-9 a - 31 : -188 a - 665 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.4247811975237109425321146979503134317 \)
Tamagawa product: \( 1024 \)  =  \(2^{4}\cdot2^{4}\cdot2\cdot2\)
Torsion order: \(8\)
Leading coefficient: \( 4.8121134763481045030714408599680401779 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(16\) \(I_{16}\) Split multiplicative \(-1\) \(1\) \(16\) \(16\)
\((2,a+1)\) \(2\) \(16\) \(I_{16}\) Split multiplicative \(-1\) \(1\) \(16\) \(16\)
\((7,a+1)\) \(7\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((7,a+5)\) \(7\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 196.1-g consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.