Refine search

Results (displaying all 48 matches)

Label Base field Conductor norm Conductor label Isogeny class Weierstrass coefficients
98.1-a1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-a \( \bigl[a\) , \( -1\) , \( 0\) , \( -168\) , \( 704\bigr] \)
98.1-a2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-a \( \bigl[a\) , \( -1\) , \( 0\) , \( 2\) , \( 0\bigr] \)
98.1-a3 \(\Q(\sqrt{15}) \) 98 98.1 98.1-a \( \bigl[a\) , \( -1\) , \( 0\) , \( 7\) , \( 11\bigr] \)
98.1-a4 \(\Q(\sqrt{15}) \) 98 98.1 98.1-a \( \bigl[a\) , \( -1\) , \( 0\) , \( -33\) , \( 35\bigr] \)
98.1-a5 \(\Q(\sqrt{15}) \) 98 98.1 98.1-a \( \bigl[a\) , \( -1\) , \( 0\) , \( -8\) , \( -22\bigr] \)
98.1-a6 \(\Q(\sqrt{15}) \) 98 98.1 98.1-a \( \bigl[a\) , \( -1\) , \( 0\) , \( -2728\) , \( 52416\bigr] \)
98.1-b1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-b \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 3 a - 323\) , \( -806 a - 325\bigr] \)
98.1-b2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-b \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 10563 a - 46403\) , \( -1314278 a + 4922491\bigr] \)
98.1-b3 \(\Q(\sqrt{15}) \) 98 98.1 98.1-b \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 3 a - 5443\) , \( -42790 a - 5445\bigr] \)
98.1-b4 \(\Q(\sqrt{15}) \) 98 98.1 98.1-b \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -10557 a - 46403\) , \( -1335398 a - 5015301\bigr] \)
98.1-c1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-c \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 2 a + 3\) , \( a + 5\bigr] \)
98.1-c2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-c \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 2 a - 37\) , \( -47 a - 35\bigr] \)
98.1-d1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-d \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \)
98.1-d2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-d \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \)
98.1-d3 \(\Q(\sqrt{15}) \) 98 98.1 98.1-d \( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \)
98.1-d4 \(\Q(\sqrt{15}) \) 98 98.1 98.1-d \( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \)
98.1-d5 \(\Q(\sqrt{15}) \) 98 98.1 98.1-d \( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \)
98.1-d6 \(\Q(\sqrt{15}) \) 98 98.1 98.1-d \( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \)
98.1-e1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-e \( \bigl[a\) , \( 0\) , \( a + 1\) , \( 6 a - 28\) , \( -4\bigr] \)
98.1-e2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-e \( \bigl[a\) , \( 0\) , \( a + 1\) , \( 86 a - 338\) , \( -754 a + 2916\bigr] \)
98.1-f1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-f \( \bigl[a\) , \( 0\) , \( 1\) , \( 674 a - 2609\) , \( 20386 a - 78954\bigr] \)
98.1-f2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-f \( \bigl[a\) , \( 0\) , \( 1\) , \( 174674 a - 676529\) , \( 78424498 a - 303736762\bigr] \)
98.1-f3 \(\Q(\sqrt{15}) \) 98 98.1 98.1-f \( \bigl[a\) , \( 0\) , \( 1\) , \( 10914 a - 42289\) , \( 1235618 a - 4785514\bigr] \)
98.1-f4 \(\Q(\sqrt{15}) \) 98 98.1 98.1-f \( \bigl[a\) , \( 0\) , \( 1\) , \( 10994 a - 42929\) , \( 1207186 a - 4673306\bigr] \)
98.1-g1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-g \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 167279 a - 647843\) , \( 76138094 a - 294881545\bigr] \)
98.1-g2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-g \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 43308719 a - 167733923\) , \( 305274968750 a - 1182324869961\bigr] \)
98.1-g3 \(\Q(\sqrt{15}) \) 98 98.1 98.1-g \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 2706799 a - 10483363\) , \( 4768014958 a - 18466442505\bigr] \)
98.1-g4 \(\Q(\sqrt{15}) \) 98 98.1 98.1-g \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 2737199 a - 10601123\) , \( 4655335982 a - 18030038729\bigr] \)
98.1-h1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-h \( \bigl[a\) , \( 0\) , \( a + 1\) , \( -7 a - 28\) , \( -a - 4\bigr] \)
98.1-h2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-h \( \bigl[a\) , \( 0\) , \( a + 1\) , \( -87 a - 338\) , \( 753 a + 2916\bigr] \)
98.1-i1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-i \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 5454 a - 21143\) , \( 445825 a - 1726703\bigr] \)
98.1-i2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-i \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 14 a - 63\) , \( -111 a + 425\bigr] \)
98.1-i3 \(\Q(\sqrt{15}) \) 98 98.1 98.1-i \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -146 a + 557\) , \( 2753 a - 10667\bigr] \)
98.1-i4 \(\Q(\sqrt{15}) \) 98 98.1 98.1-i \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 1134 a - 4403\) , \( 36289 a - 140555\bigr] \)
98.1-i5 \(\Q(\sqrt{15}) \) 98 98.1 98.1-i \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 334 a - 1303\) , \( -5839 a + 22609\bigr] \)
98.1-i6 \(\Q(\sqrt{15}) \) 98 98.1 98.1-i \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 87374 a - 338583\) , \( 27880833 a - 107983087\bigr] \)
98.1-j1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-j \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 3 a + 11\) , \( 2 a + 9\bigr] \)
98.1-j2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-j \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 3 a - 29\) , \( 10 a - 31\bigr] \)
98.1-k1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-k \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 674 a - 2614\) , \( -19712 a + 76338\bigr] \)
98.1-k2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-k \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 174674 a - 676534\) , \( -78249824 a + 303060226\bigr] \)
98.1-k3 \(\Q(\sqrt{15}) \) 98 98.1 98.1-k \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 10914 a - 42294\) , \( -1224704 a + 4743218\bigr] \)
98.1-k4 \(\Q(\sqrt{15}) \) 98 98.1 98.1-k \( \bigl[1\) , \( -1\) , \( a + 1\) , \( 10994 a - 42934\) , \( -1196192 a + 4630370\bigr] \)
98.1-l1 \(\Q(\sqrt{15}) \) 98 98.1 98.1-l \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 5458 a - 21138\) , \( -429456 a + 1663276\bigr] \)
98.1-l2 \(\Q(\sqrt{15}) \) 98 98.1 98.1-l \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 18 a - 58\) , \( 160 a - 612\bigr] \)
98.1-l3 \(\Q(\sqrt{15}) \) 98 98.1 98.1-l \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -142 a + 562\) , \( -3184 a + 12340\bigr] \)
98.1-l4 \(\Q(\sqrt{15}) \) 98 98.1 98.1-l \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 1138 a - 4398\) , \( -32880 a + 127348\bigr] \)
98.1-l5 \(\Q(\sqrt{15}) \) 98 98.1 98.1-l \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 338 a - 1298\) , \( 6848 a - 26516\bigr] \)
98.1-l6 \(\Q(\sqrt{15}) \) 98 98.1 98.1-l \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 87378 a - 338578\) , \( -27618704 a + 106967340\bigr] \)



Download all search results for