Base field \(\Q(\sqrt{15}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 15 \); class number \(2\).
Elliptic curves in class 60.1-d over \(\Q(\sqrt{15}) \)
Isogeny class 60.1-d contains 4 curves linked by isogenies of degrees dividing 6.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rrrr} 1 & 2 & 6 & 3 \\ 2 & 1 & 3 & 6 \\ 6 & 3 & 1 & 2 \\ 3 & 6 & 2 & 1 \end{array}\right)\)