Properties

Base field \(\Q(\sqrt{15}) \)
Label 2.2.60.1-162.1-b2
Conductor \((18,9 a + 9)\)
Conductor norm \( 162 \)
CM no
base-change yes: 54.a1,10800.bl2
Q-curve yes
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{15}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 15 \); class number \(2\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-15, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 15)
 
gp (2.8): K = nfinit(a^2 - 15);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y + \left(a + 1\right) y = x^{3} + \left(a - 1\right) x^{2} + \left(-436 a - 1691\right) x - 14309 a - 55421 \)
magma: E := ChangeRing(EllipticCurve([a + 1, a - 1, a + 1, -436*a - 1691, -14309*a - 55421]),K);
 
sage: E = EllipticCurve(K, [a + 1, a - 1, a + 1, -436*a - 1691, -14309*a - 55421])
 
gp (2.8): E = ellinit([a + 1, a - 1, a + 1, -436*a - 1691, -14309*a - 55421],K)
 

This is not a global minimal model: it is minimal at all primes except \((2,a + 1)\). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((18,9 a + 9)\) = \( \left(2, a + 1\right) \cdot \left(3, a\right)^{4} \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 162 \) = \( 2 \cdot 3^{4} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\((\Delta)\) = \((7962624)\) = \( \left(2, a + 1\right)^{30} \cdot \left(3, a\right)^{10} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp (2.8): E.disc
 
\(N(\Delta)\) = \( 63403380965376 \) = \( 2^{30} \cdot 3^{10} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp (2.8): norm(E.disc)
 
\(\mathfrak{D}\) = \((124416)\) = \( \left(2, a + 1\right)^{10} \cdot \left(3, a\right)^{10} \)
\(N(\mathfrak{D})\) = \( 15479341056 \) = \( 2^{18} \cdot 3^{10} \)
\(j\) = \( -\frac{1167051}{512} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp (2.8): E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
 
sage: E.rank()
 
magma: Generators(E); // includes torsion
 
sage: E.gens()
 

Regulator: not available

magma: Regulator(Generators(E));
 
sage: E.regulator_of_points(E.gens())
 

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp (2.8): elltors(E)[2]
 
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp (2.8): elltors(E)[1]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2, a + 1\right) \) \(2\) \(2\) \(I_{18}\) Non-split multiplicative \(1\) \(1\) \(18\) \(18\)
\( \left(3, a\right) \) \(3\) \(3\) \(IV^*\) Additive \(1\) \(4\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 162.1-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This curve is the base-change of elliptic curves 54.a1, 10800.bl2, defined over \(\Q\), so it is also a \(\Q\)-curve.