Properties

Base field \(\Q(\sqrt{15}) \)
Label 2.2.60.1-121.1-a
Conductor 121.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{15}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 15 \); class number \(2\).

Elliptic curves in class 121.1-a over \(\Q(\sqrt{15}) \)

Isogeny class 121.1-a contains 3 curves linked by isogenies of degrees dividing 25.

Curve label Weierstrass Coefficients
121.1-a1 \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 250250 a - 969716\) , \( -134564648 a + 521170522\bigr] \)
121.1-a2 \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 330 a - 1276\) , \( -12208 a + 47282\bigr] \)
121.1-a3 \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 10 a - 36\) , \( 72 a - 278\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph