Properties

Label 2.2.57.1-256.1-q2
Base field \(\Q(\sqrt{57}) \)
Conductor norm \( 256 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{57}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -1, 1]))
 
gp: K = nfinit(Polrev([-14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+a{x}^{2}+\left(-77309a-253177\right){x}+22623164a+74088988\)
sage: E = EllipticCurve([K([0,0]),K([0,1]),K([0,0]),K([-253177,-77309]),K([74088988,22623164])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([0,0]),Polrev([-253177,-77309]),Polrev([74088988,22623164])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,1],K![0,0],K![-253177,-77309],K![74088988,22623164]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((16)\) = \((a-4)^{4}\cdot(a+3)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 256 \) = \(2^{4}\cdot2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3072a-1024)\) = \((a-4)^{10}\cdot(a+3)^{17}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -134217728 \) = \(-2^{10}\cdot2^{17}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{925430099}{32} a + \frac{1515353487}{16} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(59 a + \frac{583}{3} : -\frac{298}{9} a - \frac{976}{9} : 1\right)$
Height \(0.97989516654786543614528189151806907946\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(58 a + 191 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.97989516654786543614528189151806907946 \)
Period: \( 11.247137957057730765975357581734680114 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 5.8390769843273640060035231746099529467 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-4)\) \(2\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(4\) \(10\) \(0\)
\((a+3)\) \(2\) \(2\) \(I_{9}^{*}\) Additive \(-1\) \(4\) \(17\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 256.1-q consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.