Properties

Label 2.2.57.1-256.1-n1
Base field \(\Q(\sqrt{57}) \)
Conductor norm \( 256 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{57}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -1, 1]))
 
gp: K = nfinit(Polrev([-14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-{x}^{2}+\left(4a-17\right){x}+40a-171\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-17,4]),K([-171,40])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-17,4]),Polrev([-171,40])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-17,4],K![-171,40]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((16)\) = \((a-4)^{4}\cdot(a+3)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 256 \) = \(2^{4}\cdot2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-256a-1280)\) = \((a-4)^{8}\cdot(a+3)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1048576 \) = \(2^{8}\cdot2^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -7168 a - 23552 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{138048}{29929} a + \frac{679988}{29929} : -\frac{152317382}{5177717} a + \frac{673315513}{5177717} : 1\right)$
Height \(7.5645544594144469606325989392136522237\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 7.5645544594144469606325989392136522237 \)
Period: \( 2.9887855612822844759022866761489520932 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 5.9892256816147320882963115863162467836 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-4)\) \(2\) \(1\) \(I_0^{*}\) Additive \(1\) \(4\) \(8\) \(0\)
\((a+3)\) \(2\) \(1\) \(II^{*}\) Additive \(-1\) \(4\) \(12\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 256.1-n consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.