Base field \(\Q(\sqrt{57}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -1, 1]))
gp: K = nfinit(Polrev([-14, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0]),K([-1,-1]),K([1,1]),K([-43417,10157]),K([-4286507,1002709])])
gp: E = ellinit([Polrev([1,0]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-43417,10157]),Polrev([-4286507,1002709])], K);
magma: E := EllipticCurve([K![1,0],K![-1,-1],K![1,1],K![-43417,10157],K![-4286507,1002709]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((-4a+2)\) | = | \((a-4)\cdot(a+3)\cdot(4a+13)\cdot(10a-43)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 228 \) | = | \(2\cdot2\cdot3\cdot19\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-190a+1178)\) | = | \((a-4)\cdot(a+3)^{4}\cdot(4a+13)\cdot(10a-43)^{3}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 658464 \) | = | \(2\cdot2^{4}\cdot3\cdot19^{3}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{25477549476528524375}{17328} a + \frac{41718432722015743375}{8664} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-\frac{167}{4} a + \frac{717}{4} : \frac{163}{8} a - \frac{721}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 1.1017096408793082310974798990273830438 \) | ||
Tamagawa product: | \( 12 \) = \(1\cdot2^{2}\cdot1\cdot3\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 3.9399751820749132960245004898835962503 \) | ||
Analytic order of Ш: | \( 9 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((a-4)\) | \(2\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((a+3)\) | \(2\) | \(4\) | \(I_{4}\) | Split multiplicative | \(-1\) | \(1\) | \(4\) | \(4\) |
\((4a+13)\) | \(3\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
\((10a-43)\) | \(19\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B.1.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 4, 6 and 12.
Its isogeny class
228.1-h
consists of curves linked by isogenies of
degrees dividing 12.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.