Base field \(\Q(\sqrt{57}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -1, 1]))
gp: K = nfinit(Polrev([-14, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0]),K([0,1]),K([0,0]),K([-5136,1203]),K([-82011,19185])])
gp: E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([0,0]),Polrev([-5136,1203]),Polrev([-82011,19185])], K);
magma: E := EllipticCurve([K![1,0],K![0,1],K![0,0],K![-5136,1203],K![-82011,19185]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((15)\) | = | \((4a+13)^{2}\cdot(5)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 225 \) | = | \(3^{2}\cdot25\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((1366875)\) | = | \((4a+13)^{14}\cdot(5)^{4}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 1868347265625 \) | = | \(3^{14}\cdot25^{4}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{111284641}{50625} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) | |
Generator | $\left(-58 a + \frac{987}{4} : \frac{4813}{4} a - \frac{41145}{8} : 1\right)$ | |
Height | \(4.0277074581286009456359540907554223438\) | |
Torsion structure: | \(\Z/2\Z\oplus\Z/2\Z\) | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| ||
Torsion generators: | $\left(-14 a + 58 : 7 a - 29 : 1\right)$ | $\left(2 a - 10 : -a + 5 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 4.0277074581286009456359540907554223438 \) | ||
Period: | \( 5.1631319424297510699594780670656647538 \) | ||
Tamagawa product: | \( 8 \) = \(2^{2}\cdot2\) | ||
Torsion order: | \(4\) | ||
Leading coefficient: | \( 2.7544425258751457899834582203215905609 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((4a+13)\) | \(3\) | \(4\) | \(I_{8}^{*}\) | Additive | \(-1\) | \(2\) | \(14\) | \(8\) |
\((5)\) | \(25\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
225.1-b
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.