Elliptic curves in class 225.1-a over \(\Q(\sqrt{57}) \)
Isogeny class 225.1-a contains
8 curves linked by isogenies of
degrees dividing 16.
Curve label |
Weierstrass Coefficients |
225.1-a1
| \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -13203 a - 43233\) , \( -2999025 a - 9821556\bigr] \)
|
225.1-a2
| \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -3 a - 3\) , \( 675 a + 2214\bigr] \)
|
225.1-a3
| \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 4197 a + 13752\) , \( -157371 a - 515373\bigr] \)
|
225.1-a4
| \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -1203 a - 3933\) , \( -19185 a - 62826\bigr] \)
|
225.1-a5
| \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -603 a - 1968\) , \( 16029 a + 52497\bigr] \)
|
225.1-a6
| \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -16203 a - 53058\) , \( -2163735 a - 7086051\bigr] \)
|
225.1-a7
| \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -9603 a - 31443\) , \( 1004859 a + 3290832\bigr] \)
|
225.1-a8
| \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -259203 a - 848883\) , \( -139305645 a - 456214446\bigr] \)
|
Rank: \( 1 \)
\(\left(\begin{array}{rrrrrrrr}
1 & 16 & 8 & 4 & 8 & 2 & 16 & 4 \\
16 & 1 & 8 & 4 & 2 & 8 & 4 & 16 \\
8 & 8 & 1 & 2 & 4 & 4 & 8 & 8 \\
4 & 4 & 2 & 1 & 2 & 2 & 4 & 4 \\
8 & 2 & 4 & 2 & 1 & 4 & 2 & 8 \\
2 & 8 & 4 & 2 & 4 & 1 & 8 & 2 \\
16 & 4 & 8 & 4 & 2 & 8 & 1 & 16 \\
4 & 16 & 8 & 4 & 8 & 2 & 16 & 1
\end{array}\right)\)