Properties

Label 2.2.57.1-196.1-g2
Base field \(\Q(\sqrt{57}) \)
Conductor norm \( 196 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{57}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-14, -1, 1]))
 
gp: K = nfinit(Polrev([-14, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-9a-27\right){x}-25a-81\)
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([1,1]),K([-27,-9]),K([-81,-25])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([1,1]),Polrev([-27,-9]),Polrev([-81,-25])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,1],K![1,1],K![-27,-9],K![-81,-25]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((14)\) = \((a-4)\cdot(a+3)\cdot(2a+7)\cdot(-2a+9)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 196 \) = \(2\cdot2\cdot7\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((114464a-410816)\) = \((a-4)^{14}\cdot(a+3)^{5}\cdot(2a+7)^{2}\cdot(-2a+9)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -61681958912 \) = \(-2^{14}\cdot2^{5}\cdot7^{2}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{9459305507}{39337984} a + \frac{4425485353}{5619712} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a + 1 : 6 : 1\right)$
Height \(0.026453311637233377099900253237847708259\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{4} a - \frac{3}{2} : -\frac{3}{8} a + \frac{1}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.026453311637233377099900253237847708259 \)
Period: \( 6.3393819569556048331031849512069994056 \)
Tamagawa product: \( 560 \)  =  \(( 2 \cdot 7 )\cdot5\cdot2\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 6.2193868516085390385091948436835335378 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-4)\) \(2\) \(14\) \(I_{14}\) Split multiplicative \(-1\) \(1\) \(14\) \(14\)
\((a+3)\) \(2\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)
\((2a+7)\) \(7\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-2a+9)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 196.1-g consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.